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Abstract 

Discrete Fourier Transform (DFT) encoding over the real (or complex) field has been pro­

posed as a means to reconstruct samples lost in multimedia transmissions over packet-based 

networks. A collection of simple sample reconstruction (and error detection) algorithms 

makes DFT codes an interesting candidate. A common problem with DFT code sample 

reconstruction algorithms is that the quantization associated with practical implementa­

tions results in reconstruction errors that are particularly large wh en lost samples occur in 

bursts (bursty erasures). 

FoHowing a survey of DFT decoding algorithms, we present herein the Tandem Fil­

terbank / DFT Code (TFBD). The TFBD code consists of a tandem arrangement of a 

filterbank and DFT encoder that effectively creates DFT codes along the rows (temporal 

codevectors) and columns (subband codevectors) of the frame under analysis. The tandem 

arrangement ensures that subband codevectors (the frame columns) will be DFT codes, 

and we show how the temporal codevectors (frame rows) can also be interpreted as DFT 

codes. AH the subband and temporal codevectors can be used to reconstruct samples en­

tirely independently of each other. An erasure burst along a particular codevector can then 

be broken up by reconstructing some lost samples along the remaining orientation; these 

samples can then be used as received samples in reconstructing the original codevector, 

a technique that we refer to as pivoting. Expressions related to the performance of the 

Tandem Filterbank / DFT (TFBD) code, including an expression for the temporal code 

reconstruction error and for temporal-to-subband pivoting operations, are derived and ver­

ified through simulations. The expressions also prove useful in the selection of the many 

parameters specifying a TFBD encoder. The design pro cess is illustrated for two sample 

TFBD codes that are then compared to a benchmark DFT code at the same rate. The 

results show that the TFBD encoder is capable of reconstruction error improvements that 

are more than four orders of magnitude better than that of the benchmark DFT code. 
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Sommaire 

L'encodage de Transforme de Fourier Discrte (TFD) sur le champ rél (ou complexe) a été 

proposé comme un outil permettant la reconstruction d'échantillons perdus lors d'une trans­

mission multimédia à travers des réseaux à base de paquets. Un ensemble d'algorithmes 

de reconstruction d'échantillons (et de détection d'erreurs) rend les codes TDF un can­

didat particulièrement intéressant. Un probléme de base auquel se heurtent les algo­

rithmes de reconstruction d'échantillons TDF est que la quantification associée avec une 

implémentation pratique implique des erreurs de reconstructions particulièrement élevées 

lorsque les échantillons perdus apparaissent en rafales. 

Suite à une étude des algorithmes de décodage TDF, nous présentons le code Batterie 

de Filtres et Encodeur TDF en Tandem (Tandem Filterbank / DFT, TFBD). Le code 

utilise une batterie de filtres et un encodeur TDF en tandem, créant ainsi des codes TDF 

le long des rangées (vecteurs de code temporel) et colonnes (vecteur de code de sousbande) 

de la trame sous analyse. L'arrangement tandem assure que les vecteurs de sousbande 

seront bel et bien des codes TD F et nous montrons aussi comment les vecteurs de code de 

temporels peuvent être interprétés comme des codes TDF. En effet, tout les vecteurs de 

code temporel et de sous bande peuvent être utilisé pour la reconstruction d'échantillons 

d'une manière entièrement indépendante. Une suppression en rafale le long d'un vecteur 

de code en particulier peut tre interrompue par la reconstruction de certains échantillons 

perdus le long des orientations restantes; ces échantillons peuvent alors être utilisés pour 

la reconstruction du vecteur de code original, une technique que nous appelons le pivot. 

Nous dérivons et validons à travers des simulations, des expressions reliées à la perfor­

mance du code TFBD. Entre autres, nous dérivons une expression l'erreur de reconstruction 

du code temporel ainsi que une expression pour un les opérations de pivot temporel-à­

sousbande. Ces expressions se montrent aussi particulièrement utiles lors de la sélection 

des paramètres spécifiant un encodeur TFBD. Notre processus de conception est illustré 
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pour deux exemples de codes TFBD qui sont par la suite comparé à un code TDF de repère 

du même taux. Selon les résultats, l'encodeur TFBD démontre une amélioration par rap­

port aux erreurs de reconstructions de plus de quatre ordre de grandeur lorsque comparé 

avec l'encodeur TDF de base. 
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Chapter 1 

Introduction 

Traditional data transmission schemes consist of a tandem source/channel coder arrange­

ment. In designing the source coder, however, it is assumed that the channel code is fiawless 

in its correction of all channel errors [1], and this is not the case in practice. An immediate 

consequence of this is that, in the presence of channel errors, there will be a threshold after 

which further increasing the source code rate will result in increased distortion [2]. 

Common source and channel coding schemes take a finite input alphabet and map it 

to a finite output alphabet. For the case of space-time channel codes used in wireless 

communications, the alphabets are determined by the symbol constellation scheme (e.g., 

M-PSK, QAM); the code performance is often measured by the probability of error in the 

symbol decision at the receiver [3]. Two well known examples of such codes are Alamouti's 

block code [4] and Tarokh's full-diversity convolutional codes [5]. 

A different set of codes known as complex codes carries out the encoding in the field 

of complex valued numbers, where the input and output alphabets are continuous and 

correspond to the entire complex plane (real codes can be seen as a special case of complex 

codes where the encoding is done over the real line). In the following section, we present 

the Impulse-Noise / Erasure Channel (INEC) model used in designing complex codes, and 

show how codes thus designed can be interpreted as joint source-channel codes. 
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1.1 Joint Source-Channel Code Design Using the Impulse 

Noise / Erasure Channel Model 

2 

The Impulse-Noise / Erasure Channel (INEC) model commonly used in the design of 

complex codes [6-9] is illustrated in Fig. 1.1. A complex valued input sequence x[m] 
is encoded onto a complex valued vector sequence HJn]. The encoded sequence is then 

quantized in preparation for transmission using traditional schemes (e.g., a wireless network 

using space-time codes). The Impulse Noise / Erasure Channel (INEC) indicated in Fig. 1.1 

provides an abstraction for this transmission and the distortion that might be introduced by 

it. At the receiving end, the decoder first attempts to detect and correct channel distortions 

along the received codevectors Q, followed by regeneration of the original input sequence, 

thus producing the estimate x[m]. 
The INEC (Impulse Noise / Erasure Channel, cf. Fig. 1.1) accounts for two types of 

channel distortions: impulse noise and erasures. Impulse noise (denoted by J!.. in Fig. 1.1) is 

additive noise restricted to a subset of samples of Q. It is meant to model errors in symbol 

decision at the receiver, which are impulsive in nature. Erasures represent samples that 

become lost (e.g., due to excessive network traffic) along the transmission. Note that the 

decoder is aware of the position of erased samples along the transmitted vector, and thus 

erasures only need to be reconstructed. The position of impulse errors, on the other hand, 

is unknown. Hence erroneous samples first need to be detected and then reconstructed, 

where erasure reconstruction algorithms may be used [7,10]. 

One can consider the combined effect of the mapping x[m] ~ JL[n] and quantizer opera­

tion to be a joint source-channel code. The INEC model provides an abstraction represent­

ing all remaining elements in the path to the decoder, accounting particularly for errors 

and erasures that might be introduced along this path. One can then use the INEC to 

design a joint source-channel code that will provide for the correction of erroneous and lost 

samples, thus avoiding the tradition al source code design assumption of fiawless channel 

decoding. 

1.1.1 Applications of Erasure Reconstruction Methods 

This thesis addresses the erasure reconstruction aspect of a special type of complex codes 

known as DFT codes, particularly when the erasures are bursty, meaning that they occur 
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x[m] 

Encoder Channel Decoder 

x[m] H y[n] 

1------1 

i!'! l 'r! Ë 
1 v e 1 
1_:::' ___ =- ~ 

ri-------~--------~ 
: JJn] H :f:[n] 2 :f:[n] H x[m] :x[m] 

I ___________________ J 

Fig. 1.1 Code design for the impulse-noise / erasure channel model: The 
error and erasure vectors are !!.. and §., respectively. The first stage in the 
decoder compensates for channel artifices, producing the estimate y of y, the 
second stage regenerates the message sequence. The Q(.) operator represents 
quantization. Note aU the specified vectors (e.g., !!..) are functions of time n 
(e.g., Jdn]). 
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at circularly contiguous positions along the transmitted vector. 1 In the context of packet­

based network transmissions, packet loss due to high network traffic can result in bursty 

erasures. Current network protocols deal with these events by either ignoring the lost 

packets, or triggering retransmission mechanisms. The first method greatly affects the 

quality of the transmission, while the later increases the delay. Real-time multimedia data 

is particularly sensitive to both artifacts, and would benefit from mechanisms designed 

to provide improved distortion performance (than that wh en lost packets are ignored), at 

reduced delays [8,9]. 

Ferreira mentions other applications for lost sam pIe resilient complex codes including 

algorithm based fault-tolerant computing, where failure of a processing unit will result 

in lost output samples [11]. Adding redundancy to the computation in a well planned 

manner can enable the remaining processing units to reconstruct the lost output data. Yet 

another application occurs in the context of data encoding for optical disks, where erasure 

bursts can oCCur as a result of scratches or other physical damage [12]. As mentioned 

previously, sam pIe reconstruction also has applications in the correction of impulse noise, 

where erroneous samples, once detected, can be treated as lost samples. Several examples of 

this approach exist in the recent literature [6,7,9]. Labeau et al. [6] use the analysis stage of 

a filterbank to arrive at a maximum-likelihood (ML) optimal impulse noise reconstruction 

method. Using statistics corresponding to (bursty) erasures in place of the Gaussian impulse 

noise model used therein would also result in an ML optimal solution to the (bursty) erasure 

1 For the case of DFT codes, circularly contiguous erasures suffer the same reconstruction problems (in 
the presence of quantization) as bursty erasures. 
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reconstruction problem. 

1.2 DFT Codes 

Throughout this work, particular emphasis is given to a class of complex codes known as 

DFT codes [13]. An (N, K)-DFT code maps an input message vector ~[n] (K-blocked 

version of input sequence x[m]) of size K onto an output code vector lL[n] of size N. 2 The 

mapping is do ne through a DFT generator matrix G: 

lL = G~. 

As discussed in the literature [7-10], decoding algorithms for DFT codevectors exist that 

enable detection of as many as l (d - E) /2 J errors (here E is the number of erasures) and 

correction of as many as E ~ d erasures, where d = N - K. 

A DFT generator matrix takes an input K-dimensional message vector and generates an 

N-point codevector. This is done by padding the K-point DFT of the message vector with 

N - K zeros, and then taking the N-point IDFT. In Section 1.2.1 we present the form and 

qualities of DFT generator matrices in more detail, and for this purpose we now introduce 

sorne notation. We let the operator W N represent the DFT matrix; the element at its k-th 

row and I-th column is (we use subscript (k, 1), to denote this element, k,l E 0, ... ,N -1): 

W 1 -j21rkl/N 
N(kl) = --e . , ..jN 

The DFT matrix W N carries out the DFT operation on its input vector. Likewise, its 

hermitian transpose W~ carries out the related inverse DFT (IDFT) operation; we will 

calI W~ the IDFT matrix. Note that the columns of the DFT (and IDFT) matrix are 

orthonormal, and its hermitian transpose equals its conjugate (W~ = W~). 

1.2.1 Interpretation as Block Codes Over the Complex Field 

The general form for a DFT generator matrix is obtained from the matrix W~XK formed 

from a subset of K columns of the IDFT matrix W~, multiplied by an arbitrary full rank 

2DFT codes are memoryless, but also for codes with memory we drop the time indices, for simplicity, 
and use ~ and JI: 
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matrix of the form A W K, where A is size K x K and W K is the DFT matrix of size 

KxK: 

(1.1 ) 

If we (i) consider the vector '1 formed by linearly combining sorne columns of the (or­

thonormal) ID FT matrix W~ and (ii) note that its DFT will result from pre-multiplication 

by the DFT matrix W N, it foUows that the DFT of '1 will be non-zero only at those positions 

corresponding to the indices of the selected columns. Referring to (1.1), the codevector 

y. G± 

W~xKAWK± 

W H , 
NxK± 

can be seen to be a linear combinat ion of the K columns of W~ found in W~XK' Rence, 

the DFT Y of y. will have a set of non-zero frequencies that we will caU the generator 

frequencies or passband frequencies, and a set of nuU frequencies that we will caU the parity 

or stop band frequencies. 3 

To summarize, the defining factor of a DFT codevector y. = G± is that its DFT will 

have nuUs at aU parity frequencies, corresponding to the redundancy introduced by the 

code; the message information will be restricted to the generator frequencies. With this in 

mind, the simplest form of a DFT generator matrix will be: 

G = W~XK' (1.2) 

We will refer to this as simple generator matrices. We will use the term simple, upper­

parity generator matrix for the special case when the columns comprising G are the first 

K columns of W N (we use subscript (*, {O, ... K -1}) to denote aU these columns): 

G=WH 
. N(*,{O, ... K-l}) (1.3) 

Simple generator matrices and simple upper-parity generator matrices are used extensively 

throughout this work. 

Another special case of G resulting in lowpass, real codevectors can be constructed for 

3The terms generator and parity frequencies are borrowed from Rath and Guillemot [8,9,14] 
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odd K by letting A = land selecting the first 1 + (K - 1)/2 and last (K - 1)/2 columns 

of W~ to form W~XK [13]: 
G=W~XKWK. (1.4) 

The resulting form for the codevector JL will correspond to an oversampled version of the 

original message vector ;f [7]. 

To summarize, DFT generator matrices map an input K-dimensional vector ;f onto a 

K-dimensional subspace of eN (spanned by K columns of W~) referred to as the gener­

ator space. The complement of the generator space (the parity spa ce ) is spanned by the 

remaining d = N - K columns of W~, which we group to form the parity matrix of the 

code, H. The analogy to M -ary block codes [3] can be extended in defining the syndrome 

vector §., which is null for aIl codevectors JL: 

(1.5) 

In the presence of quantization and channel artifacts, the syndrome vector will be non-zero. 

As we will see later, it will be useful in the detection and correction of errors and erasures. 

1.3 Contributions: Combatting Burst y Erasures with the TFBD 

Code 

The problem with sample reconstruction in DFT codevectors is that once quantization 

is carried out, the error detection and sample reconstruction capabilities are diminished. 

Regardless of the decoding method used, this problem is greatly accentuated when the 

erasures occur in bursts [7,9,15]. One possible approach to avoid bursty erasures is to 

use an interleaver at the transmitter, but for the case of delay sensitive applications like 

multimedia transmissions, this approach might not be practical. In this work we focus on 

the "coding-theoretic" erasure reconstruction method presented by Rath [9] (and covered 

in Chapter 2), where it was also shown that the reconstruction error of DFT codevectors 

increases exponentially with the length of the erasure burst. 

Addressing the case of bursty erasures is the intent of the proposed Tandem Filter-Bank 

DFT code (TFBD code) developed in this work. The TFBD code is a 2-D code. As shown 

in Fig. 1.2, we arrange a sequence of TF BD output codevectors JL[n] into a two dimension al 
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x[nJ (H, K) 
TFBD 
Code 

(a) 

)!.[nJ 
/ 

". ' N 

(b) 

Fig. 1.2 The TFBD frame and the subband / temporal codevectors: In­
put/output relationship (a) of a TFBD encoder with code rate K/N. Output 
codevectors (b) are stacked to form a frame. The samples constituting a sin­
gle temporal codevector and a single subband codevector are indicated by the 
horizontal and vertical arrows, respectively. The heavy-lined region denotes 
lost samples and the sample marked .èl denotes a pivot sample. 

7 

frame (matrix). The columns of this matrix we will refer to as subband codevectors, the 

rows we will refer to as temporal codevectors. Given the form of the TFBD setup, the 

subband codevectors are DFT codevectors; we will also see that the TFBD setup allows us 

to treat the temporal codevectors as DFT-like codevectors. Given the dimensions N x Lw 

of the frame, the TFBD code provides N + Lw DFT codevectors per frame to choose from 

in reconstructing samples. The codevectors will be disjoint, meaning that they can be used 

to reconstruct samples independently of each other. We can thus choose the reconstruction 

orientation of each sample (subband or temporal) in order to break up erasure bursts. We 

illustrate this in Fig. 1.2, where the heavy lined-block denotes an example erasure burst. 

Decoding both lost samples along the temporal orientation would reduce the erasure burst 

length to one, whereas subband reconstruction alone would imply reconstructing a burst 

of length two. 

The previous discussion suggests the following: since subband and temporal codevectors 

can be used to reconstruct samples independently of each other, we can treat reconstructed 

samples resulting from previous reconstructions along one orientation as received samples 

in further reconstructions along the remaining orientation, a technique we refer to as piv­

oting. We use the term pivoting because the reconstruction orientation is rotated about 

a given (pivot) sample, and also because this pivot sample is used as a means of support 
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in reconstructing a different erasure burst. In Fig. 1.2 we denote a pivot sample with the 

circular arrow symbol ..CI; it corresponds to a lost sample reconstructed along the temporal 

orientation. Following this temporal reconstruction, the pivot is used to reconstruct the 

remaining lost sample along the subband orientation, where the pivot is used as a received 

sample. 

And so, the TFBD code (i) provides a set of disjoint codevectors that one can choose 

from to reconstruct lost samples and (ii) allows for previous reconstructed samples (pivots) 

to be used to the benefit of subsequent reconstructions. The problem at hand is, in the 

first case, how to select the reconstruction orientation for a given sample and in the second 

case, how to choose pivot samples and order of reconstruction along a given frame. We 

provide answers to these questions by deriving performance analysis expressions for the 

various reconstruction operations available with the TFBD code. We first derive exact 

expressions (and a simplified upper bound) for the reconstruction performance of temporal 

codevectors. In doing so, we also derive the correlation matrix of a (windowed) subband 

from a uniform filterbank (further taken over an arbitrary DFT frequency band). After 

formally introducing the concept of pivoting, we derive exact expressions (as weIl as a 

simplified upper-bound) for the reconstruction error when using previously reconstructed 

samples along the subband orientation to break up bursts along the temporal orientation. 

These expressions can be used in designing a decoder that reduces the large reconstruction 

error resulting from bursty erasures by selecting both the reconstruction order and pivot 

samples for a given erasure burst. We illustrate this with the design of two sample codes 

that, depending on the dimensions of the 2-D (subband / temporal) erasure burst, can 

improve the reconstruction error by more than four orders of magnitude relative to the 

DFT code at the same rate. 

1.4 Organization 

The organization of the remainder of this work is as follows: We begin by presenting a 

survey of INEC decoding methods for DFT codes in Chapter 2. We emphasize the coding­

theoretic erasure reconstruction method (cf. Section 2.3.1) applicable to DFT codes, as it 

will be the method used in TFBD erasure reconstructions. We go on to present and justify 

the TFBD encoder setup in Chapter 3. In Chapter 4 we de rive performance measures for 

the temporal code and for pivoted reconstructions, along with other related expressions 
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including the uniform filterbank subband correlation matrix mentioned above. Simulation 

results for aIl the expressions derived in Chapter 3 and Chapter 4 are presented in Chapter 5, 

where we also demonstrate how the derived expressions can be used as design tools in the 

selection of the many parameters that specify a TFBD encoder. 

1.5 Notation 

(For a full List of notational conventions used in this work, please refer to Tbl. A.1, 

pg. 89.) We use bold characters su ch as G to denote matrices, and underlined characters 

to denote column vectors (e.g., ±). Generally, vectors will be time sequences denoted by 

±[n], but we will often drop the time index for convenience. The k-th entry of vector ± 

will be referred to by ±(k); the entry in the k-th row and l-th column of matrix G will be 

given by G(k,l). For the case of matrices G(k,*) and G(*,l) will denote the k-th row and 

l-th column, respectively. We will form sub-vectors and sub-rows by taking the entries 

from a vector/row-vector over a set of indices; this we will denote by ±(ll) and G(ll,l), for 

vectors, and G(k,ll) for row-vectors, where n denotes a set of indices. We let W N = e- j21f
/
N

, 

and use W N to denote the N x N DFT matrix with (k, l) entry JN ~V;}. We will also 

use 0 and Q to denote the zero matrix and the zero vector, respectively. Superscripts T, 
H, + and * denote transpose (GT

), hermitian transpose (GH
), pseudoinverse (G+) and 

conjugation (G*) operations, respectively. FinaIly, we will use (N, K)-code to specify a 

code with codeword size N and input message vector size K; the rate of this code will be 

KIN. 



Chapter 2 

Survey of Complex Codes for the 

Impulse Noise / Erasure Channel 

10 

As mentioned in the previous chapter (cf. Section 1.2.1), an (N, K) DFT code is defined 

as having codevectors Y... of size N with nulls at the d = N - K parity frequencies; the 

information is stored in the remaining K generator frequencies. We group the parity 

frequency components to form the syndrome vector §., which will be non-zero in the presence 

of channel distortion. Given a message vector ~, the codevector will be Y... = G~ and its 

syndrome will be §. = H'Hy"', where Gand H are the generator and parity matrices, 

respectively. 

Following quantization and transmission over an INEC (Impulse Noise / Erasure Chan­

nel, cf. Fig. 1.1), sorne samples will be lost, and these we will replace by zeroes. Of 

those that are available, sorne will be erroneous (i. e., errors and erasures occur at mutually 

exclusive positions). We can write this as follows: 

iL = Y... + l!. + ~ + 9., (2.1) 

where l!., ~, and 9. denote the error, erasure and quantization vectors, respectively. The 

quantization vector 9. is null at the erasure positions; at aH other positions it is assumed to 

have uniformly distributed, i.i.d. entries with variance (J~. The error vector is an impulse 

noise vector; only 1/ of its entries are non-zero, and these are assumed to occur at positions 

eo, . .. , ev-l, where ei E 0, ... N - 1. The E erasure positions will be ev, . .. ,ev+E-I' The 

erasure vector ~ is null at aH positions except these E erasure positions, where ~(k) = -Y...(k)' 
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As stated before, the N-th roots of unit y will be given by wt = e-j21rk/N, k = 0, ... ,N, 

and for convenience, we will let 

k = 0, ... , E + 1/ - 1 

be the roots corresponding to the error and erasure positions ek. 

In this chapter we present a brief survey of methods designed to correct the distortions 

of the INEC (Impulse Noise / Erasure Channel ). We first present a complex field version 

of the Reed-Solomon polynomial-based algorithm for error and erasure correction. Then 

we present a related error detection method based on the ESPRIT parameter estimation 

method of array signal processing theory. As we will see, the error in sample reconstruction 

is particularly large when erasures are bursty, and this we discuss in the context of two 

erasure reconstruction algorithms. As motivation for the development of a novel TFBD 

algorithm, we present, in the last section of this chapter, the complex-field-convolutional­

code interpretation of oversampled filterbanks; as an example, we discuss an error correction 

method that we present in the context of erasure reconstruction. 

2.1 Reed-Solomon Decoding in the Complex Field 

Blahut [10] states that complex field operations (e.g., DFT, matrix determinants, singular 

value decomposition) that can be defined in terms of additions and multiplications can 

also be defined over finite fields, where addition and multiplication (and their inverses) 

also exist. He then applies this argument to present a generalized Reed-Solomon decoding 

algorithm applicable to the complex field, where DFT codes (with circularly contiguous 

parity frequencies) are seen to be the complex field equivalent of Reed-Solomon codes. In 

this section we summarize the decoding method presented therein, showing how to both 

detect error positions and reconstruct (lost or erroneous) samples in DFT codevectors. 

As mentioned in Chapter 1, an intuitive divide-and-conquer attempt at tackling the 

problem consists in breaking it up into two steps: (i) detecting the positions of erroneous 

samples (for erasure reconstruction, we skip this step) and (ii) reconstructing the erroneous 

samples. Rather than reconstructing the erroneous samples directly, complex field Reed­

Solomon codes obtain the values of the errors, and then subtract these from the received 

codevector. 
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Error Detection in the Absence of Erasures: We initially consider the case wh en 

no erasures or quantization are present: 

(2.2) 

We formulate the divide-and-conquer approach mathematically with the help of the error 

locator polynomial, defined as follows: 

v-l 

A(x) = II(1-Xix-1
) 

i=O 
v 

LAix-i, where Ao = 1. 
i=O 

(2.3a) 

(2.3b) 

We can express the error locator polynomial in N -dimensional vector form by padding 

the coefficients Ak with zeros as follows: 1 

(2.4) 

The use of A lies in that the k-th entry .6.(k) of its N-point IDFT .6. will be A(W~.): 

.6.(k) = A(Wt), k = 0, ... N - 1. (2.5) 

Since A(x) has zeros at the roots of unit y X k corresponding to the error positions (we are 

neglecting erasures for now), .6. will have nulls only at those entries with indices correspond­

ing to error positions (hence the name error locator polynomial for A(x)): 

.6.(k)~(k) = 0, k = 0, ... ,N - 1. 

We take the DFT of this expression to write it as a circular convolution: 

N 

LA(k)V(m-k)N = 0, 
k=O 

(2.6) 

(2.7) 

1 Note that A(x) we introduce specifically to define the vector 11, and it is the latter that is of interest 
in our discussion. We pad 11 with extra zeroes and make it an N-dimensional vector for consistency, since 
we are interested in its N-point ID FT ~. 
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where we use subscript (l) N to denote the entry at position 1 modulo N. We carry out the 

first step towards our solution (that of detecting the error positions) by evaluating (2.7) 

for several m in or der to obtain a system of equations where only the Al, 1 = 1, ... ,1/ are 

unknowns (the error positions follow from the roots of A(x), cf. (2.3)). This is possible 

because, in the absence of erasures and quantization, the syndrome vector §.. = HTiQ is 

the DFT V of the error vector !!.., evaluated over the set of (circularly contiguous) parity 

frequencies. If we let qo denote the first of the circularly contiguous parity frequencies, we 

can write this as 

§..(k) = V (qo+k) . (2.8) 

And hence, using m = qo + 1/, ... , qo + d - 1 in (2.7) will yield the desired system. The 

system will consist of d - 1/ equations, and these need to be at least as many as the 1/ errors, 

limiting the number of detectable errors to: 

1/ ~ ld/2J. (2.9) 

The second step towards our solution consists of obtaining the error vector !!.., or equiv­

alently, its DFT V. Since we already have the error vector components over the parity 

frequencies (found in the syndrome vector), we need only obtain those corresponding to 

the generator frequencies, and these can be obtained recursively from (2.7) by expressing 

V(m) in terms of its 1/ previous components: 

N 

V =-"'A V -(m) ~ -(k)-(m-k)N· 
k=l 

Error Detection with Erasures: The case when erasures are present can be addressed 

by converting the (partial) received codevector Q with impulse errors and erasures into a 

different, complete DFT codevector fi with impulse errors at the original positions and 
-z 

without erasures (and this we already know how to fix). The form for the received code-

vector will be 

(2.10) 

Following the transformation onto a complete DFT codevector, the resulting form will be 

.. - + 1/ Ji.z - JLz -z , (2.11) 
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where lL
z 

will be a DFT codevector with reduced number of parity frequencies, and!!..z will 

be an impulse noise vector with non-zero entries at the same positions as the original noise 

vector!!... Equation (2.11) is of the same form as (2.2), and can hence be solved accordingly. 

-E 

T I(k}; DFT of codevector 

I? !1(m-k}N,m = 0 
Modified Parity 

Frequencies 
1 <-----------------------~ 1 , , , , , , , , T !1(m-k}N' m = qo' qo + E-1 

o 

,. 
1 

1 
1 

T 

. , , , 

, Pari~ Frequencies i 
i -<---------------T------------------------~! 

,.!! 1 

l T!! , 
~ ! ---.;. i 1 

li: : 
~ ,/f ///1 1 

---~ .. -.. -! ! 
': ' 

qo qo+E-1 qo+d-l 

" T * , 1 
1 1 T 1 
1 1 1 
1 1 1 
1 1 1 

N-I 

Fig. 2.1 Error detection with erasures using the modified codevector: Cir­
cularly convolving the erasure locator coefficients O(m-k)N with the entries 
'!L(k) of the original codevector eliminates the E parity frequencies at k = 

@, ... ,qo + E - 1. Note the signal shapes where chosen strictly for illustrative 
purposes. (Adapted from Rath and Guillemot [B}.) 

We first define the erasure locafor polynomial O(x) as follows: 

E-l 

O(x) = II (1 - Xv+iX-l) 
i=O 
E 

- LOix- i, 0 0 = 1 
i=O 

and the related vector 0 as follows: 

k 

(2.12a) 

(2.12b) 

(2.12c) 

We use ~ to denote the N-point ID FT vector of O. As before (cf. (2.3), (2.5)), ~ vanishes 

only at the erasure positions (corresponding to the only zeros of O(x)): f.(k)~(k) = 0 Vk. 
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We multiply w entry-wise with '.il. to obtain: 2 

JL(k)!:!d.(k) 

'.il.(k)!:!d.(k) 

'.ii.z(k) 

(JL(k) + f:.(k) )!:!d.(k) + l!.(k)!:!d.(k) 

JL(k)!:!d.(k) + l!.(k)!:!d.(k) 

JLz(k) + l!.z(k) 

(2.13a) 

(2.13b) 

Since (i) w is nuU only at erasure positions and (ii) error and erasure positions are mutually 

exclusive, one can see that l!.z is an impulse noise vector, with errors at the same positions 

as l!.. To see that JLz is a DFT codevector, we express its DFT Y z as the circular convolution 

between Y and n (cf. (2.7)): 

N-l 

Yz(m) = 2: n(m-k)NY(k) , m=O, ... ,N-1. 
k=O 

(2.14) 

In Fig. 2.1 we have plotted the factors n(m-k)N and Y(k) in the summation of (2.14) 

versus k to illustrate the foUowing point: since there are E + 1 erasure locator coefficients 

ni (E + 1 contiguous non-zero elements in n, cf. (2.12b)), the resulting vector JLz will 

loose E DFT frequency nuUs (relative to JL), one each for the summation indices m = 

qo, . .. ,qo + E - 1 (the parity frequencies are assumed circularly contiguous starting at qo). 

In the figure (Fig. 2.1), we plot the first and last corresponding shifted versions of n(m-k)N 

(those at m = qo and m = qo + E - 1), where the horizontal arrow denotes the remaining 

intermediate shift values (m = qo + 1, ... , qo + E - 2). We refer to the resul ting vector y as 
-z 

the modified codevector; l!.z will be the modified error vector. Note (cf. (2.13)) that l!.z is 

still an impulse noise error vector with errors at the same positions as l!., and that we can 

extract l!. from l!.z (using (2.13)). Since JLz will have nuUs at the modified parity frequencies, 

y exists in the span of a DFT generator matrix (cf. Section 1.2.1), effectively creating 
-z 
a new received DFT codevector while removing the effect of erasures. One can build the 

error locator polynomial in (2.3b) and carry out the related detection and reconstruction 

of errors on y as in the case where there were no erasures, keeping in mind that, given the 
-z 

2Here we provide a different analysis than that of [8] and [10] by presenting the decomposition of (2.13), 
and showing that the modified codevector J!..z is a DFT codevector, while !!.Z remains an impulse noise 
vector. 
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number of modified parity frequencies (d - E), at most 

1 = L(d - E)/2J (2.15) 

errors can be corrected (1/ :s l, cf. (2.9)). 

Error Detection with Quantization: Both in the case where erasures were present 

and otherwise, the described algorithms ignored quantization noise. In the presence of 

quantization, the algorithms would be carried out in the same manner, and the resulting 

detected error positions and error/erasure reconstructions will only be estimates of the 

actual values. 

2.2 Subspace Methods for Error Detection 

Rath and Guillemot [8] improved the detection performance of quantized DFT codes by 

presenting a set of new methods for detection of erroneous samples in the presence of era­

sures. We group them here under the term syndrome-based subspace methods. The methods 

are based on the ESPRIT algorithm [14] used for parameter estimation in array process­

ing theory [16]. Here we present a brief overview of syndrome-based subspace methods as 

introduced by Rath and Guillemot [8,14]. 

Assume again that 1/ errors are located at codevector positions eo, . .. ,ev-l, and that E 

erasures are located at positions ev, . .. ,ev+E-I' Again we let X k = W~ (k = 0, ... ,E + 
1/ - 1) be the N-th roots of unit y corresponding to the error and erasure positions. We 

define the error locator matrix V v as follows: 

1 1 1 

V v = 
X o Xl X v- l 

[ 1Zeo ] = 1Zq ... 1Ze"-1 (2.16) 

X I+E 
0 

X I+E 
l 

X I+E 
v-l 

where the constant l is the maximum number of detectable errors, given also by (2.15) [8]. 

We note in particular that the vectors 1Ze
k 

= [1, X~, ... ,XI+E]T comprising the columns of 

V v consist of powers of distinct roots of unity. For arbitrary roots of unit y, we will use 

1Ze = [1, WN, ... , W~(l+E)jT, e = 0, ... , N - 1. 
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We define the erasure locator matrix V E likewise (cf. (2.16)), with columns J2.
ek

, k = 

1/, ... ,1/+ E - 1: 

V E = [v e ve . .. ve ] 
- v - v+l - v+E-l 

(2.17) 

The error locator matrix and the erasure locator matrix span the error locator subspace and 

the erasure locator subspace, respectively. Together, they span the error-erasure subspace 

span{[V viVE]) C CHE+!. Sinee the X k are aU distinct roots of unit y, and [V v 1 V E] is size 

(l + E + 1) X (1/ + E) (i.e., a rectangular, taU matrix, since 1/ ~ l), its columns correspond 

to rows of Vandermonde matrices [4], and are henee linearly independent. For the same 

reason, if we take any other vector J2.ex that is not a column of [V v 1 V E], the matrix 

[V v 1 V El J2.eJ of size (1 + E + 1) X (1/ + E + 1) will also have linearly independent columns. 

Rence any J2.ex will always have a non-zero component in the orthogonal complement space 

of the error-erasure subspaee. Only the J2.ek (corresponding to errorjerasure positions ek) 

will be entirely contained in the error-erasure subspaee: 

12.e -.L span{[Vv 1 V E]}-L = Q if and only if e E {eklk = 1, ... ,1/ + E -1} (2.18) 

where we let -.L den ote the orthogonal projection operator and use span {.}-L for the orthog­

onal complement spaee. 

The basic idea behind aU the subspaee methods [8] is to find an orthonormal basis of the 

complement space span {[V v 1 V E]}-L, which we refer to as the noise subspace. We gather 

a corresponding orthonormal basis (l + 1 - 1/ vectors) to form the matrix U. Using (2.18), 

we can find the set of error and erasure positions (and from this the error positions, since 

the erasure positions are assumed known) from those e E {a, ... ,N - 1} satisfying: 

J2.";U = O. (2.19) 

The error-erasure subspace span{[V~+E+l) 1 V~+E+l)]} is obtained from the syndrome 

correlation matrix Rs = S Sh, where S is formed from the elements of the syndrome vector 

§.. = H'Hfi.: 

§..(O) §..(l) §..(d-E-l-l) 

S= §..(l) §..(2) §..(d-E-l) 
(2.20) 

§..(I+E) §..(1+I+E) §..(d-l) 
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The matrix S is full rank and spans the error-erasure subspace exactly (ignoring quanti­

zation, see Appendix B for a proof). And so, a singular value decomposition of Rs = SS'H 

will yield v + E non-zero eigenvalues (and hence the number of errors); the corresponding 

eigenvectors will span the error-erasure subspace (cf. Appendix B). The zero eigenvalue 

will have order 1 + l- v 2: 1 , and the associated eigenvectors will span the noise subspace. 

Note that this justifies the dimensions selected for S, as the noise subspace is guaranteed 

to have at least dimension one (as long as v :s l) and can thus be used to find the v roots 

of unit y with corresponding 12.e satisfying (2.19). 

In the presence of quantization noise, it is only possible to obtain an approximation 

of U in (2.19), and the resulting estimate for the set of error positions can be taken as 

the v indices e (e E 1, ... , N) that minimize 112.~UI. In this situation, the eigenvalues 

corresponding to the noise subspace will no longer be zero. Rather, a threshold needs 

to be defined that distinguishes between low-valued singular values corresponding to the 

noise subspace and high-valued singular values corresponding to the error-erasure subspace. 

The detection performance will no longer be exact. It will be a function of the disparities 

between the noise subspace eigenvalues and those of the error-erasure subspace, and better 

detection performance will occur at higher error-to-quantization-noise power ratios (i. e., 

larger error magnitudes). 

2.3 Erasure Reconstruction and the Burst y Erasure Phenomenon 

In this section we present two methods used to reconstruct lost samples in DFT codevectors. 

The methods are particularly interesting because they lend themselves intuitively to an 

explanation of the bursty erasure phenomenon. As mentioned previously, quantization noise 

affects the erasure reconstruction capabilities of DFT codes. Burst Y erasures in particular 

will result in reconstruction errors with magnitudes that grow exponentially with the length 

of the burst [9]. We refer to this explosion in the reconstruction error as the bursiy erasure 

phenomenon. 

We first present the coding-theoretic approach to sample reconstruction [9]: the parity 

matrix H is used in deriving a matrix T that will reproduce the erased samples given those 

received. A geometrical interpretation of both the encoding process (J!.. = Gç;r) and the re­

construction process will provide one explanation for the bursty erasure phenomenon. The 

coding-theoretic reconstruction method will be the one used in the Tandem Filter-Bank 
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DFT (TFBD) code that is the focus of this thesis, and we will see that the geometrical 

interpretation provides justification for the TFBD setup. We next present a systems theory 

based reconstruction approach [7] where the lost samples are obtained as the zero-input 

solution to a difference equation. The syndrome vector will serve as the set of initial con­

ditions of the system. Using this systems theory approach, the bursty erasure phenomenon 

will be explained in terms of the clustering of zeros in the transfer function of the resulting 

solution. 

We will let E denote the number of erasures in a received codevector; R will be the 

number of received samples. Since we ignore error detection in our discussion, the positions 

of the erasures along the received codevector will be denoted by eo, ... ,eE-l. The resulting 

form for the received vector will be: 

(2.21) 

2.3.1 Coding-Theoretic Erasure Reconstruction 

We can demonstrate the coding theor'eiic erasure recovery process wh en using DFT codes 

by considering the null syndrome constraint of any DFT code vector: H1-lJL = Q. For 

notational simplicity, we will use C = H1-l to rewrite the null syndrome constraint as: 

(2.22) 

We group aIl the erased samples from JL to form vector JLE (JLE(k) = JL(ek); we group the 

received samples to form JLR (using rk to denote the k-th received position, JLR(k) = JL(Tk) , 

cf. Tb!. A.1, pg. 89). We break up C respectively so that CE consists of those columns 

of C with indices corresponding to erasure positions (C E(*,k) = C (*,ek))' and CR consists 

of those with indices corresponding to received positions (CR(*,k) = C(*,Tk))' Using this, 

we can rewrite (2.22) as follows: 

(2.23) 
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Whenever E < d = N - K, Y..E can be recovered from Y..R by rearranging terms as follows: 

Y..E - -C~CRY..R = TY..R' 

where T - -C~C R. 

(2.24a) 

(2.24b) 

Here we have used the plus superscript 0+ to denote the pseudo-inverse. Referring to 

(2.21), the actual vector i2
R 

available to the decoder is a quantized version of Y..R. In this 

case, TY.R will provide an estimate 'ILE of the lost samples. We model the quantization using 

Cl; samples of Cl at received positions will yield vector ClR (LLd. entries, uniform distribution 

with me an zero and variance O"~). We can write the samples 'ILE(k) of 'ILE and their related 

mean square error (code sample mean square error at the k-th erasure position ek, or 'lT(ek)) 

as follows [9], where tk denotes the k-th row of T : 

tkY.R 
tk(Y..R + ClR) 

- Y..E(k) + tkClR 

The resulting code sample me an square error will be: 

E [1'ILE(k) - Y..E(k) 12] 

E [tkClRCl~t~] 
0"~ltkl2 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Rath and Guillemot [9] prove that It~12 (and hence also 'lT(ek) , cf. (2.28)) grows ex­

ponentially with the length of the erasure burst. This we refer to as the bursty erasure 

phenomenon. By interpreting the encoding operation Y.. = GÇf as the projection of Çf onto 

the rows gk of G, we can obtain an intuitive explanation for this phenomenon, as we now 

show. 
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2.3.2 Geometrical Interpretation of the Burst y Erasure Phenomenon 

In this section we present a geometrical explanation for the bursty erasure phenomenon [9]. 

For the purpose of illustration, we consider a (5, 2) real-valued DFT code. The available 

samples are those at positions 0 and 1, samples 2 through 4 need to be reconstructed. 

Referring to Fig. 2.2, the encoding operation Ji. = G:f. can be interpreted as the projec­

tions gk in CK of the message vector :f. onto the lines defined by the rows 9k of G: 

In the absence of quantization, any K or more projections (i. e., the received samples 

Ji.
R

) will specify :f. exactly, and this will yield the remaining lost samples Ji.
E

. Note that 

this reconstruction is carried out directly by (2.24a). In the presence of quantization, the 

projections gk are known to exist in the interval 9k ± !::l./2, where the 9k are the available 

projections, and !::l. is the quantization step-size. Rather than specifying :f. exactly, the 

intervals 9k ± !::l./2 intersect at a parallelogram JP> containing:f.. The resulting projection 

of JP> onto rows corresponding to lost samples will be larger (e.g., a diagonal of JP» than 

!::l.. Given the constraints on G imposed by DFT codes, the 9k will be positioned in space 

such that bursty erasures in particular will both increase the lengths of diagonals and align 

them to rows corresponding to lost samples [9]. 

The previous discussion motivates the search for a method to break up erasure bursts 

by obtaining a better estimate for sorne or aIl lost samples. We illustrate the idea behind 

such a method geometrically in Fig. 2.2: The original received samples correspond to the 

projections 90 and 91, where !::l. is the quantization bin size; the original message vector :f. 

is thus known to exist in JP>. If we somehow were to obtain a better estimate for one (or 

more) of the lost samples (in this case 94t) than that associated with the projection of JP> 

onto the corresponding row, we could use the new estimate to (statisticaIly) crop JP>, thus 

reducing the uncertainty in the remaining reconstructions (93 in the figure). In Chapter 4 

we will see how the TFBD code can produce such estimates using a technique that we refer 

to as pivoting. 
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1 •• 1 :go: 
~ 
:ô: 

Fig. 2.2 Geometrical interpretation of bursty erasure phenomenon: Obtain­
ing a better estimate 94t for projection g4 reduces the dimensions of lP', thus 
improving all remaining projections. (Adapted from Rath and Guillemot !9j.) 

2.3.3 Systems Theory Interpretation of the Burst y Erasure Phenomenon 

Marvasti [7] presents another facet of the erasure correction capabilities of DFT codes in the 

form of the BERT (Burst Error Recovery Technique) algorithm. The method is based on 

the error locator polynomial [8,10] given by (2.12). After showing that lost samples can be 

obtained from the zero-input response of a system described by a linear constant coefficient 

difference equation (LCCDE), the explosive magnitude of the reconstruction error in the 

presence of bursty erasures is explained in the context of systems theory. 

In Section 2.1 we presented a complex field Reed-Solomon decoder. The decoding pro­

cess was carried out in two steps, the first yi el ding the positions of the errors and the second 

their value. This same method can be adapted to develop a new erasure reconstruction 

method, with the simplification that the positions of the erasures are known. The informa­

tion regarding their positions can be expressed using the erasure locator polynomial and 

its equivalent vector representation 0 (given by (2.12b)), and we wish to obtain the DFT 

E of the erasure vector~. We can substitute 0 and the DFT E of the erasure vector in 



2 Survey of Complex Codes for the Impulse Noise / Erasure Channel 23 

place of A and V ( respectively) in (2.7) to write 

N 

L O(m-k)N V(k) = 0, 0 0 = 1 
k=O 

Using the commutative property of the circular convolution, we rewrite this as 

E 

L O(k) V(m-k)N 
k=O 

E(m) 

0, 0 0 = 1, and rearranging, 

E 

- L O(k)E(m-k)N' m = 0, ... , N - 1, 
k=l 

(2.29) 

(2.30) 

where we have used the fact that 0 = [00 , ... , OE, OlxN-E-l, cf. (2.12). We note that 

(2.30) corresponds to a linear constant coefficient difference equation (LCCDE) defined by 

the non-zero taps Ok (first E entries of 0). Given any E continuous values of E(l)' we 

can obtain the remaining values from the zero-input response of this LCCDE. Since Y.. is 

a DFT codevector, we have available at most d = N - K initial conditions in the form 

of the syndrome §.. Rence, for the system in (2.30) to be solvable, it must be of order 

at most d (at most d + 1 taps Ok).3 Since there are E + 1 taps Ok, we write E ::; d 

and hence d is the maximum number of reconstructions possible with this method. Note 

that with the co ding theoretic method discussed in Section 2.3.1, the maximum number 

of reconstructions is K = N - d. We can solve d > N - d to see that Marvasti's BERT 

method [7] (the one discussed presently) will correct more (less) errors whenever N > 2K 

(N < 2K). At higher code rates, the co ding theoretic method discussed in Section 2.3.1 

will be capable of reconstructing more lost samples. 

To get new insight into the bursty erasure phenomenon (cf. Section 2.3), we group the 

taps Ok in the (IIR) system of (2.30) to form the (FIR) filter h[k] = Ok, k = 1, ... ,E [7]. 
The z-transform of h[k] will be given by: 

E N-l 

H(z) = L h[k]z-k = L OkZ-k 
k=O k=O 

3This discussion on the maximum number of correct able erasures and comparison to the complex field 
Reed-Solomon method of Section 2.1 is not given by Marvasti [7]. 
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Fig. 2.3 Zero clustering interpretation of bursty erasure phenomenon: Zero 
plot of H(z) for the case of bursty erasures. The point Zd is diametrically 
opposite to the cluster of zeros. 

Referring to (2.12b) we can see that H(z) = D(z) and hence H(z) has zeros at the E 

roots of unit y corresponding to the erasure positions, and these will be contiguous when 

erasures are bursty. A heuristic explanation [7] for the bursty erasure phenomenon can 

be obtained by considering the zero plot of H(z) for bursty erasures (see the sample in 

Fig. 2.3). Assuming an (N, K) DFT code with N < 2K, the zeros of H(z) will be clustered 

on the same half of the complex plane. If we were to evaluate H(z) on the point Zd on the 

unit circle diametrically opposite to the cluster of zeros, a lower bound on its magnitude 

would be (v''2)E, which grows exponentially with the length of the burst (cf. Fig. 2.3). To 

see how this will affect the solution to (2.30), we write the z-transform of the solution to 

(2.30) as follows [7]: 

E(z) = 2::=12:;=1 h[k].E2(r)zk-r+1 

1 + 2::=1 h[k]zk 
(2.31) 

In the presence of quantization, the zeros and poles of the filter will be given by Zi + b.zi 

and zp + b.zp, respectively. The b.zi and b.zp represent the error in the position of the zeros 

and poles resulting from the error b.E (k) in the E (k) used for the initial state of the filter 

(corresponding to the syndrome coefficients). Both b.zi and b.zp can be expressed in terms 
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of the !:lE(k) using differential calculus. The results [7] are: 

E (_ "E h[k]z~-1'+E ) 
'" 6k=1 • !:lE 
~ IlE ( ) -(1') 
1'-1 1=1 Zi - Zl 
- l'Ii 

(2.32a) 

E (_ZE-r ) L E P !:lh[r] 
1'=1 Il~~t (zp - Zl) 

(2.32b) 

Based on our previous discussion, the values for h[n] can be very large in the presence of 

burstyerasures (IH(z)1 grew faster than exponentially on the point Zd, cf. Fig. 2.3), and we 

see that these parameters appear in the numerators of (2.32). As a result, we can expect 

large errors in the LCCDE solution E(z) and the related erasure estimates. 

2.4 Filterbanks as Convolutional Codes Over the Complex Field 

X(z) -...----1 

X(z) 

Fig. 2.4 Filterbank analysis stage: Standard analysis stage of an oversam­
pIed filterbank (N > K). 

Consider the analysis stage of the oversampled filterbank of Fig. 2.4. We let x[m], fi[n], 
and u[n] represent the time domain versions of X(z), Fi(z) and Y(z) respectively. The l-th 

polyphase component ff[n] [17,18] of the filter fi[n] is obtained by left-shifting the filter 

by l samples and keeping only every K-th sample: 

We can use the K resulting polyphase components ff[n] (l = 0, ... , K - 1) thus defined to 
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reconstruct the original filter, where we use [J1[nl] (jK) to denote f1[n] upsampled by K: 

K 

fi[n] = L [fnn -ll] (jK) 

1=0 

Equivalently in the z-domain: 

K-l 

Fi(z) = L F;(zK)z-1 (2.33) 
1=0 

By grouping all the polyphase components Ff(z) into the polyphase mairix G(z), we can 

express (2.33) in matrix form as follows: 

[ 

F~(z) 
G(z) = : .. . 

FRr_l(Z) .. . 

Fo(z) 

F1(z) 

1 

(2.34) 

Here F(z) is the vector composed of all the filters Fi(z), and DK(z) is the vector composed 

of delays. Using this, we redraw the filterbank block diagram in Fig. 2.4 in matrix form 

as illustrated in Fig. 2.5. The first noble identity [17, 18] establishes a useful equivalent 

representation for multi-rate systems involving decimators (see its matrix form in Fig. 2.6). 

Applying it to Fig. 2.5 yields the form shown in Fig. 2.7 for our oversampled filterbank. 

This form is the polyphase representation of the filterbank, and it allows us to represent 

the filterbank transfer function using the following matrix equation: 

Y(z) = G(z)X(z) (2.35) 

The time domain vector sequence ~[n] corresponding to X(z) will be the K-blocked version 

of the message sequence x[m]: 

~(k) [n] = x[nK + k] 

The mapping from x[m] to its K-blocked version ~[n] is done by means of the operator 

DK(z) (cf. (2.33)). 
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X(z) I2x(z) M G(:!) ~X(z) 

Fig. 2.5 Matrix form for oversampled filterbank. 

Fig. 2.6 Matrix form of first noble identity. 

The expression of (2.35) is a generalization of the complex field block-code JL = G;r 

seen previously. While block-codes encode a K-dimensional vector ;r to an N-dimensional 

vector JL, (2.35) encodes the corresponding vector sequence ;r[n] onto the vector sequence 

JL[n]. If we assume the filters Fi(z) to be FIR, the polyphase matrix G(z) will also be FIR; 

we can write G(z) as follows: 
Lg-l 

G(z) = L G1z-1 

1=0 

Using this, we express the encoding operation (2.35) in the time domain as follows: 

Lg-l 

JL[n] = L GŒ[n - l] (2.36) 
1=0 

The expression is reminiscent of those representing convolutional codes in finite fields [3], 

and we can say that (2.36) is the complex field extension of the finite field convolutional 

codes used extensively in digital communications. 

X(z) I2x(z) ~.~ G(z) r X(z) 

X(z) 

Fig. 2.7 Polyphase form for oversampled filterbank. 
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2.4.1 Erasure Correction Using Filterbanks 

We saw in the previous section how filterbanks can be interpreted as convolution al codes 

over the complex field. Labeau et al. [6] derive a decoder for such a code that ad dresses 

the distortions of the INEC, and we coyer it in the present section. The method was 

presented in the context of impulse noise detection and correction, but we discuss it here in 

the context of sample reconstruction. The resulting algorithm will be optimal in the me an 

square sense. However, derivations where provided [6] for the PDF of the impulse error 

magnitude given the available information, and it seems promising to adapt this method 

using statistics corresponding to (bursty) erasures to obtain a maximum-likelihood (bursty) 

erasure reconstruction method. 

Since the generator matrix G(z) in (2.36) is rectangular (assumed full column rank 

almost everywhere), we can define the related parity matrix H (z) similarly to our previous 

definition as spanning the null-space of G(z) [6]: 

H(Z)HG(Z) = o. 

The syndrome definition follows likewise as S(z) = HH(z)Y(z), which in the absence of 

errors or quantization, will be the zero vector Q. We express the z-transform of the received 

vector sequence Y(z) and its syndrome (where we use C(z) = HH(z)) as follows: 

Y(z) 

~(z) 

'H-(z) + ~(z) + 9,(z), 

C(zk(z) + C(z)9,(z) 

C(zk(z) + 9,'(z). 

(2.37) 

(2.38) 

(2.39) 

We assume C(z) to have entries that are FIR of length at most Le, and express it as 

Lc-1 

C(z) = L ckz-k, 
k=O 

where the C k con si st of constant values. We use Ck(*,l) to denote the l-th column of 

Ck. Following the work of Labeau [6], we only consider a single lost sample e = -'H-(m) [l] 
affecting the m-th subband at time l. In the time domain, the resulting form for (2.39) can 
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be expressed as: 

k = 0, ... ,Le-1 

where we note that, given the FIR nature of C(z) and the position of the erasure, only the 

syndromes at times l, . .. ,1 + Le - 1 will be affected. We can stack these to form Q[l]: 

.z[l] CO(*,m) !l'[l] 

S[l] = 
.z[l + 1] C*,m) 

+ 
~'[l + 1] 

(2.40) = -e 

.z[l + Le -1]7 CLc-1(*,m) q'[l + Le -1] 

The mean square estimate for the erased sample e foIlows directly by left multiplying Q[l] 

by the pseudoinverse of [CO(*,m)IC1(*,m)I·· .ICLc (*,m)]7. 

2.5 Summary 

We began this chapter by showing how DFT codes could be interpreted as the complex 

field extension of discrete Reed-Solomon codes. We then presented several ways in which 

one could use DFT codes to detect and correct errors, as weIl as reconstruct erasures. For 

completeness, we went on to present subspace-based methods of error detection. We then 

presented several erasure reconstruction methods and showed how for the case wh en era­

sures where contiguous (bursty erasures), the reconstruction error was very large. FinaIly, 

we presented an erasure reconstruction method based on filterbanks and showed how such 

a transmit ter could be interpreted as a complex-field convolutional code. 

In the next chapter we introduce the proposed Tandem Filterbank / DFT code (TFBD 

code) that is the focus of this thesis. The code aims at preserving the decoding simplicity 

and resourcefulness of DFT codes, while improving their reconstruction abilities in the 

presence of bursty erasures. As we will see, the TFBD code will be a 2-D code: a TFBD 

frame can be interpreted as being composed of DFT codevectors along its rows and columns. 

By judiciously choosing the DFT codevector used for a particular reconstruction, one can 

avoid bursty erasures and thus achieve the desired improvement in reconstruction error. 
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We now begin our discussion of the Tandem Filterbank / DFT code (TFBD code), de­

signed and analyzed as the main focus of this thesis. The TF BD code is meant to improve 

the bursty erasure reconstruction performance of quantized DFT codes, and sample recon­

struction (as opposed to error detection) is thus the main focus throughout this and the 

following chapters. However, as we will see, aIl the decoding (error and erasure correction) 

methods applicable to DFT codevectors (cf. Chapter 2) also apply to TFBD codevectors. 

We begin this chapter by presenting the TFBD encoder setup and deriving the related 

transfer function. We then justify the setup by explaining the many tools it exposes in 

dealing with bursty erasures. In the next chapter, we will carry out a mathematical analysis 

of the capabilities of these tools. 

3.1 Tandem Filterbank / DFT Encoder Setup 

The TFBD encoding process is illustrated in Fig. 3.1 and Fig. 3.2 (we show their equivalence 

in Section 3.2). From Fig. 3.1, it is straightforward to see that the spectral shape of 

subbands comprising ]L'[n] will be the same. Linear combinat ion in the form of G will 

not alter this spectral shape in the resulting subbands of ]L[n]. From Fig. 3.2, one can see 

the relationship between the TFBD encoder and the standard filterbank analysis stage of 

Fig. 2.4. 

The encoding process can be broken up into two stages: the first stage maps the input 
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sequence x[n] to the vector sequence u'[n]. Since there are Kb subbands comprising vector 

u/[n], and each subband is downsampled by a factor of K, the expansion factor for this 

stage is Kbl K, where Kb > K. The second stage linearly combines the subbands in u'[n] 
via a DFT generator matrix G of size N x Kb, thus forming the output vector sequence 

u[n]. Given the dimensions of G, the expansion factor for this stage is NI Kb, for a net 

system code rate of KIN. We will refer to this as an (N, Kb, K) TFBD code, where we 

emphasize the following relationship: 

(3.1) 

In the following section of this chapter we will derive the TFBD (Tandem Filter­

bank 1 DFT) transfer function. We will use it in the following chapter (Chapter 4) to 

der ive expressions for the performance of the TFBD code. 

3.2 TFBD Transfer Function 

The transfer function from x[n] to the l-th entry U(l) [n] of u/[n] can be obtained by inspection 

from Fig. 3.1, where Lf is the length of the prototype filter j[n], and subscript (1 K) den otes 

downsampling by K: 

U(l)[n] = [(Kx[n]WK~n) * f[nJ](!K) (3.2) 

Lf-l 

K L fla] (x[nK - a]WK~(nK-a)) (3.3) 
a=O 

This can be rearranged to obtain: 

Lf-l 

U(l)n] = KWK~Kn L (f[a]Wj(U x[nK - a]. (3.4) 
a=O 

Here the term in parentheses corresponds to the l-th analysis filter fda] in Fig. 3.2. We 

substitute to get: 
Lf-l 

U(l)[n] = KWK~Kn L fl[a] x[nK - a] (3.5) 
a=O 
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f[n] 

w;;n 
b 

K f[n] 

x[m] -2n DFT Generator WKb Matrix Gof 

f[n] size N x Kb 

-(Kb-1)n 
W

Kb 

f[n] 

'--y-/ '--y-/ 

~Jn] ~[n] 

Fig. 3.1 Proposed TFBD encoder: The input sequence is modulated so that 
subsequent frequency bands are brought down to the baseband, followed by 
lowpass filtering with j[n], downsampling, and DFT encoding. 

fo[n] 

K Jj[n] 

xIm] 

.f2[ n] 

DFT Generator 
Matrix Gof 
size N x Kb 

'--y-/ 

~[n] 

Fig. 3.2 Equivalent form for TFBD encoder: The analysis filters fdn] 
j[n]W~ are modulated versions of the prototype filter j[n] in Fig. 3.1. 

32 
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where the summation and scaled time index 'nK' represent the subband filtering and 

downsampling operations in Fig. 3.2, respectively, and the complex exponential represents 

the subband modulation. Thus we can see that the two configurations given in Fig. 3.1 

and Fig. 3.2 are equivalent. We can use (3.5) to write an expression for the entries J!..(k) [n] 

of J!..[n]: 
Kb- 1 

1L(k)[n] = L G(k,I)1L~I)[n] (3.6a) 
1=0 

Kb-1 Lf-l 

1L(k) [n] = K L L G(k,l)fz[a]x[nK - a]WK~Kn (3.6b) 
1=0 a=O 

In Chapter 4 we will use equation (3.6b) in deriving performance measures for the 

reconstruction capabilities of the TFBD code. 

3.3 Justification for TFBD Encoder Setup 

For our prototype filter J[n] we will use a lowpass filter with a nominal cutoff frequency 

1/2Kb, where we have normalized the [0,21f] angular frequency axis to the interval [0, 1]; 

we will refer to this normalized axis as the f -axis. This cutoff frequency is chosen because 

it div ides the spectrum of x[n] into Kb portions of equal length, each corresponding to 

one component of J!..'[n]. Following the downsampling operation, the subband components 

Y'(k)[n] in Fig. 3.1 will have a maximum frequency of K/2Kb. We are particularly inter­

ested in the 1L(k) ln], and since these are linear combinations of the yi (k) ln], they will retain 

the lowpass shape with maximum frequency K /2Kb. We use ITp to den ote the passband 

(support) of J!..(k)[n] and ITs to denote its stopband, as indicated in Fig. 3.3. The length of 

this passband (we use IITI to denote the length of interval IT) will be given by: 

(3.7) 

where the inequality follows from the TFBD requirement K < Kb. The complement of ITp 

along the f-axis corresponds to the stopband ITs of the J!..(k) ln], and its length will be: 

(3.8) 
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Generato;F;;que~~Te;'T Parity Frequencies Generator Frequencies 
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Fig. 3.3 Parity and generator frequencies of temporal code: The spectral 
shape of TFBD temporal codevectors y~,a is plotted on the f-axis. The cor­
responding position of temporal codevector parity and generator frequencies 
is indicated on the k-axis. 
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The lowpass shape of the time sequences JL(I) [n] could potentially be used to block quan­

tization power falling outside the passband IIp , reducing it by IlIp l2 = (KI Kb)2. Since the 

vectors JL[n] exist in the span of G (cf. Fig. 3.1), we could then reconstruct samples using 

the corresponding reconstruction matrix T given in (2.24). However, as discussed in Sec­

tion 1.2, the reconstruction error of DFT codes (given by (2.28) as 0";ltkI2) in the presence 

of bursty erasures is dominated by the very large magnitude of the rows tk of T. When 

erasures are bursty, the rows tk grow exponentially in magnitude with a decreased number 

of available samples [9]. As explained next, the TFBD code allows for lost samples to be 

reconstructed along both the temporal and subband orientations, thus making provisions 

for breaking up erasure bursts and taking advantage of the available exponential gain in 

Itkl 2
. 

3.3.1 The Subband and Temporal Codevectors 

The crux of the matter regarding the TFBD code is that, by bandlimitting the scalar time 

sequences JL(I)[n] (cf. Fig. 3.1), we are in fact implementing a separate DFT-like code along 

time. To see this we first consider a TFBD frame, defined with the help of a window w[n] 
centered at zero, and of length Lw = 2Dw + 1. We take Lw contiguous TFBD codevectors 

JL[n], weighed by the corresponding window entry, and stack them to form the matrix that 

we refer to as the TFBD frame: 

(3.9) 
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The window w[n] adds the ftexibility of spectral shaping (along the rows of the frame) 

while allowing us to process the sequence 1{[n] by blocks of Lw weighted vectors. We will 

refer to the rows of the frame as the temporal codevectors; the columns we will calI the 

subband codevectors. From Fig. 3.1 it is easy to see that the subband codevectors exist 

in the span of a DFT generator matrix G (the subband generator matrix), and are hence 

DFT codevectors: they can be used to reconstruct samples using a reconstruction matrix 

T built according to (2.24b). We will also see that the temporal codevectors also behave 

as DFT codevectors, and have a related temporal generator matrix Q. As with any DFT 

code, the temporal code can be used to reconstruct samples using a reconstruction matrix 

T, also built according to (2.24b). However, the expression for the CSMSE will no longer 

be given by (2.28); we derive error expressions for the temporal code and for the related 

pivoting application in Chapter 4. 

To see how the bandlimited sequences 1{(I) [n] behave as DFT-like codevectors, we first 

consider the characteristics of the subband DFT code (and DFT codes in general): the 

subband codevectors 1{[n] exist in the span of sorne DFT generator matrix G with general 

form given by (1.1) and reproduced here as: 

As described in Section 1.2, the generator matrix structures the subband codevectors by 

forcing nulls at aIl parity frequencies; the encoded message information will be contained 

in the set of generator or passband frequencies. As seen from (2.24), reconstruction matri­

ces are uniquely determined by these parity frequencies and the position of the erasures, 

regardless of the particular form of the DFT generator matrix. 

Consider now the finite sequence formed from subbands 1{(I) [n] in Fig. 3.1: 

(3.10a) 

with n the sequence index and l = 0, ... ,Kb - 1 the subband index; w[n] is length Lw = 
2Dw + 1 and centered at zero. Using this, we can express the temporal codevectors in 
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vector form (i.e., the transpose of the rows of (3.9)) as follows: 

(3.lOb) 

If we assume for a moment that f[n] is an ideallowpass filter, and that w[n] is an ideal 

window (one that preserves perfectly the ideal lowpass shape), then Ji..zw,a will always have 

nulls at all DFT frequencies (for an Lw-point DFT) corresponding to the stopband. The 

message information will be stored in the LLwlIIplJ passband (or generator, cf. Section 1.2) 

frequencies. The remaining Lw - LLwlIIplJ (null) frequencies will be the parity frequencies of 

the temporal code. Rence, J!..~,a exists in the span of the lowpass DFT generator matrix G of 

size Lw x Lw IIIpl, and with knowledge of the erasure positions, we can construct the temporal 

reconstruction matrix T and recover lost samples as with any DFT code. In combinat ion 

with the subband codevectors, the temporal codevectors en able the reconstruction pro cess 

to be carried out along the temporal or subband orientation in order to avoid erasure bursts 

along a particular direction (we present the related pivoting application in Chapter 4). 

In this sense we say that a TFBD frame consists of several DFT codevectors, those falling 

along the horizontal orientation, referred to as temporal codevectors, and those falling along 

the vertical orientation, referred to as subband codevectors. We say that all the codevectors 

in a frame are disjoint in the sense that they can be decoded entirely independently of each 

other. In the next chapter we will see that, under practical assumptions for the prototype 

filter f[n] and window w[n], the temporal codevector Ji..zw,a[n] can be decomposed as 

The component y [n] will be shown to be a DFT codevector, while y [n] will be responsible 
-p -8 

for reconstruction errors akin to those resulting from quantization noise present in any 

practical DFT code setup. 

3.3.2 Variable Code Length and Position 

We now discuss other ways in which the temporal code can be used to improve recon­

struction performance. As mentioned previously, the temporal code has L LwIIpJ generator 
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frequencies and Lw -lLwlIpJ parity frequencies, meaning that J!...zw,a is an (Lw, lLwlIpJ) DFT 

code. For illustration purposes, we let Lw = AKb; applying (3.7), the temporal code will 

be (AKb, AK). Hence the rate of the temporal code is fixed at KI Kb but its length can 

be varied through parameter A. The length of the subband code, on the other hand, is 

fixed at N. Fig. 3.4 illustrates the potential application of the variable length of y"~,a. The 

figure plots the magnitude l'1"kl 2 of the rows of the temporal reconstruction matrix T corre­

sponding to an (AKb, AK) code (fixed rate, variable length) for a fixed number of erasures 

E = 8 and A=l, 2 and 50. As can be seen, most of the substantial reduction in l'1"kl 2 

can be obtained for A = 2, which implies doubling the size of the DFT generator matrix 

used in defining the temporal reconstruction matrix T, and with this a related increase in 

complexity in constructing and using T. Referring to (2.28), we saw that for DFT codes, 

the CSMSE (code sample mean square error) was directly proportional to the magnitude 

of rows of the reconstruction matrix. The temporal code is a DFT-like code and hence we 

can expect similar benefits, and we can thus say that the variable length of the temporal 

code allows us to trade processing complexity for reduced CSMSE. In Chapter 4 we derive 

exact performance expressions for the temporal code, and in Chapter 5 we test it through 

simulations. 

We now note that the position a of the temporal window used in constructing the 

temporal codevector (cf. (3.10a)) can be varied as part of the decoding process. One can 

use this to split temporal erasure bursts amongst two consecutive temporal codevectors 

y"~,ao and y"~,al lying along the same subband. Their positions ao and al = ao + Lw (they 

are consecutive) will be such that they meet in the middle of the temporal erasure burst 

under consideration. We illustrate this graphically in Fig. 3.5, where the two temporal 

erasure codevectors are denoted by J!...zw,ao and y"~,al. The lost samples forming the temporal 

erasure burst are delineated by the heavy line, and the positions ao and al of the temporal 

codevectors are chosen so each codevector is responsible for correcting half the samples in 

the burst, effectively reducing the length of the maximum reconstructed burst by half (note 

that we are neglecting subband decoding for illustrative purposes, as decoding along the 

subbands would only require reconstructions of a single lost sample). 



3 Proposed Tandem Filterbank / DFT Generator Matrix Setup 

1~~~~.~. ~"~~~~~:~:~::7::~:~::~::~:~::~:::::~::~::~::~::~.~::::~:.= .. =.= .. ~.=.= .. = .. =.~ ... 

106 
:::::::::: 

~A=l 

~A=2 

-<il-- A=50 

. . , . 
::.:::::: :.:::::::::: :.:::::::::: :.:::::::::::::::::.'::::::::::::. 

N 105 
~"" 

•••••••• ,' ••••••••••• ', ••••••••• ,', ••••••••• ", ••••••••• , •••••••••• 1 ••••••••• . .. . . . ........ '" ......... ", ......... '" ......... ", .......... , .......... : ........ . 

1~L-------~----~------~------~------~------~------~ o 1 234 5 6 7 
Row Index k 

Fig. 3.4 Row magnitudes of temporal reconstruction matrix vs. code length: 
The horizontal axis indicates the row index of the temporal reconstruction 
matrix. The reconstruction matrix used corresponds to a (Kb, K) DFT code 
for Kb = 19 and K = 11. 
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o J 

o 

J 

N-J 

Fig. 3.5 Splitting temporal erasure bursts: The temporal erasure burst is 
split along the middle so that '!!...f,OIQ and '!!...f,0I1 are each used to reconstruct 
half the samples. The heavy frame delineates the temporal erasure burst, 
and the dashed line separates the two frames under analysis. Double-sided 
arrows specify the two temporal codevectors under analysis, and we highlight 
the available samples in both codevectors. Upper column labels specify the 
frame-relative time indices; bottom column labels specify the time index n; 
row labels specify subband indices. 

3.4 Summary 
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We began the present chapter by introducing the Tandem Filterbank / DFT (TFBD) 

encoder: it consists of the tandem arrangement of a uniform filterbank with baseband­

modulated subbands, followed by a DFT generator matrix. The resulting TFBD frame 

consists of temporal codevectors (along the rows) and subband codevectors (along the 

columns). We then derived the TFBD transfer function; it will prove useful in the next 

chapter, where we derive expressions for the TFBD reconstruction error. We finished our 

introduction by discussing ways in which the resulting TFBD frame could be exploited to 

improve bursty erasure reconstructions. 

In the next chapter we discuss better ways of exploiting the TFBD frame structure. We 

begin by presenting a mathematical analysis of the TFBD temporal code and show how 

it can be interpreted as a DFT code. We then provide expressions for the code sample 

reconstruction error (CSMSE) of the temporal code. In the last sections of the chapter, we 

introduce pivoting, a method by which samples reconstructed along one orientation can be 

used as received samples in carrying out reconstructions along the remaining orientation. 

As a means of empirical support for the correctness of our expression (we test expressions 
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experimentally in Chapter 5), we conclu de by revisiting the geometrical interpretation of 

the bursty erasure phenomenon( cf. Section 2.3) and show how our pivoting expression 

corresponds to the geometrical model. 



Chapter 4 

Mathematical Analysis of the TFBD 

Code 

41 

In the previous chapter we introduced the basic form of the TFBD encoder and saw how it 

effectively creates disjoint DFT codevectors along the rows and columns of the frame under 

analysis. By disjoint we mean that these codevectors can be reconstructed independently 

of each other. We thus have at least two possible ways of reconstructing any given sample: 

along the temporal or horizontal orientations. To select the reconstruction orientation we 

choose the one that minimizes the code sample me an square error (CSMSE) of the related 

sample. One problem with this approach is that the temporal code does not have exact 

nulls at the parity frequencies, meaning that the CSMSE expression of DFT codevectors 

given in Section 1.2 do es not apply. We are hence lacking the tools to make decisions 

regarding the reconstruction orientation. 

We begin the present chapter by introducing the temporal reconstruction matrix Tthat 

we will use to carry out reconstructions along the temporal orientation. We then present 

the stopband / passband decomposition of the temporal codevector. We will see that the 

passband component is a DFT codevector responsible for the DFT-code-like qualities of 

the temporal code, while the stopband component will be responsible for reconstruction 

errors akin to those resulting from quantization noise. We next derive an exact expression 

for the CSMSE of the temporal code in the presence of quantization noise, which we then 

use to derive a simplified upper bound. The expressions will be in terms of the correlation 

matrix of the stopband component of temporal codevectors, and this we derive next. We 
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go on to show how samples reconstructed along one orientation can be used as received 

samples in carrying out reconstructions along the remaining orientation, a technique we 

refer to as pivoting. We then derive an exact expression for temporal-to-subband pivoting 

operations, as well as the corresponding simplified upper bound. 

4.1 Reconstructing Samples With the Temporal Code 

A CSMSE performance analysis of the temporal code can be carried out by expanding 

on the method [9] presented in Section 2.3.1. There we saw that one could partition the 

null syndrome requirement of DFT codevectors (HHJL = CJL = Q, C = HH) to build a 

reconstruction matrix T: We group the received samples to form the received vector JL
R

, 

and do likewise with the erased samples to form the erasure vector JLE' Reordering the 

columns of C correspondingly, we rewrite the null syndrome requirement as: 

(4.1) 

As long as R ~ E, we can solve for JL
E 

to arrive at the general form of a DFT reconstruction 

matrix: 

T = -CiCR (4.2) 

In the absence of quantization, the reconstruction JLE = TJL
R 

will be exact. In practice, the 

decoder only has access to the quantized samples 

The resulting reconstruction will only yield the estimate Q = TY..R' As we saw in (2.28), 

by letting the rows of T be denoted by tk, we can write the related CSMSE (code sample 

mean square error) as 

(4.3) 

where ek is the position of the k-th erasure and O"~ is the quantization noise power. 

We note that in order to build a general DFT reconstruction matrix we need two pieces 

of information: Since the parity matrix H (and C follows from C = HH) is formed from 

the columns of the ID FT matrix Wj$ with indices corresponding to those of the parity 



4 Mathematical Analysis of the TFBD Code 43 

frequencies, we first need to know the set of parity frequencies. Secondly, in order to carry 

out the partitioning C = [CRIC E ]' we need to know the position of the erasures. And so 

a general DFT reconstruction matrix T is entirely specified from the parity and erasure 

indices. 

As discussed in the last chapter, we have seen that the temporal code can be said to 

have parity frequencies at the stopband of the JL(k) [n] (this is illustrated in Fig. 3.3). And 

hence, with knowledge of the erasure positions, we can build a temporal reconstruction 

matrix Tas with any DFT codevector and use it in reconstructing lost samples. However, 

since the temporal code does not have exact nuns at the parity frequencies, the code sample 

mean square error (CSMSE) given in (2.28) (and reproduced in (4.3)) will no longer apply. 

4.1.1 The Stopband and Passband Components of the Temporal Codevector 

In order to carry out a CSMSE analysis of the temporal code, we first decompose the 

temporal codevector into a stopband and passband component. The passband component 

will have exact nuns at DFT frequencies in the stopband, and so we can use these as 

parity frequencies in carrying out reconstructions, while treating the stopband component 

as noise. For notational convenience we will drop the subband and position indices land 

ex in JLzw,O/ and let JLw denote a general temporal codevector. 

Let yW and yW denote the stopband and passband components of the temporal code 
-8 -p 

vector, respectively (we neglect quantization for now): 

(4.4) 

The stopband (respectively passband) component is the IDFT of the DFT of JLw after 

zeroing out an DFT components corresponding to the passband (respectively stopband). 

For instance, the passband component yW can be written as: 
-p 

JL; W~wDpW LwJLw 

= wi:wDpYw 

(4.5) 

(4.6) 

Where Dp corresponds to the identity matrix with zeros along diagonal entries indexed 

over the stopband frequencies. Likewise, using Ds = 1 - Dp the stopband component can 
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be expressed as 

(4.7) 

where we have also defined the stopband operator F 8 , used later in the chapter. 

For clarity, we now summarize our notation as follows (see Tbl. A.I, pg. 89 for a 

full list of notational conventions): subscripts p and s (e.g., yW, yW) denote passband 
-p -8 

and stopband components, respectively. Subscripts E and R (e.g., lL~, lL~) will denote 

vectors composed of samples with erasedjreceived indices. We will combine this notation 

to denote receivedjerased samples taken from the stopbandjpassband components of lLw , 

For example, lL~8 will contain samples with received indices from vector i:. 
We now show how the temporal codevector can be interpreted as a DFT code. Referring 

to (4.6), we rearrange the columns of Dp and partition it as Dp = [Eg la], where Eg will 

contain all the non-zero columns. We reorder Y W accordingly to obtain [y;'T 1 y~'Tf, 1 so 

that we can rewrite (4.6) as follows: 

[Y
W

'] 
yW - WH [E la] -p (4.8a) -p Lw 9 yw' 

-8 

WH E yw' 
Lw g-P (4.8b) 

G w' pyp (4.8c) 

where Gp is a simple DFT generator matrix (cf. (1.2) )consisting of the columns of W Lw 

with indices corresponding to passband frequencies. This shows that yW is a DFT code­
-p 

vector and that there must exist a related temporal reconstruction matrix 7 of size E x R 

allowing us to write: 
W -7 W lLEp - lLRp' (4.9) 

where lL~p (respectively lL~p) is composed of samples from lL; with erased (received) indices. 

To summarize, we began by decomposing the temporal codevector into its passband and 

stopband components. The passband component had nulls at the stopband frequencies 

and was hence a DFT codevector. We showed this by deriving an expression for the 

corresponding DFT generator matrix. We can thus build a temporal reconstruction matrix 

7 and use it in estimating lost samples along the temporal orientation. We note that even 

INote y;' (respectively y~') is composed only of the non-zero elements of the DFT ofJL; (~). 
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in the absence of quantization, the resulting estimates 1!..~p(k) produced by (4.9) will only 

be an approximation to the actual lost samples 1!..~(ek)' their usefulness being a function 

of the stopband attenuation of the prototype filters f[n] (cf. Fig. 3.1). Furthermore, 

rather than having access to the passband samples 1!..~p(k) (cf. (4.9) ), we only have at our 

disposaI those corresponding to the temporal codevector 1!..~, adding addition al error to our 

reconstruction. We take these points into account in the following discussion, where we 

derive exact expressions for the CSMSE of temporal reconstruction operations. 

4.1.2 CSMSE Performance Analysis of the Temporal Code 

In the presence of quantization, the vector i!..~ available to the decoder has the form 

i!..~ 1!..~ + D Rw9.R 

i!..~ 1!..~s + 1!..~p + D Rw9.R 

where 9.R represents the quantization noise, modeled as i.i.d. uniform samples with variance 

O"~; D Rw is a diagonal matrix with entries of w[n] corresponding to received samples along 

its main diagonal. Using i!..~ in (4.9), we can build an estimate Q~p (and use it in place of 

1!..~ in the decoder output) as follows: 

T··w 
1!..R 

T(1!..~p + 1!..~s + D Rw9.R) 

1!..~p + T(1!..~s + D Rw9.R) (4.10) 

We will use (4.10) to find the code sample mean square error for the passband erasure vector 

estimate, wp(ek), where ek denotes the position of the k-th erased sample along the original 

codevector; rk will be used likewise for the k-th received sample. We note that, being the 

CSMSE of the passband component, wp(ek) will be an approximation to the CSMSE ofthe 

temporal codeword, ww(ek). Using (4.10), we express the temporal reconstruction error 

as: 

W AW 

1!..E(k) - 1!..Ep(k) 1!..~(k) - [1!..~p(k) + Tk(1!..~s + D Rw9.R)] 

1!..~s(k) - Tk(1!..~s + D Rw9.R) 

(4.11a) 

(4.11b) 
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The resulting form for ww(ek) follows, where we let T'k den ote the k-th row of the temporal 

reconstruction matrix T: 

ww(ek) - E[ Ilt.~(k) - Q~p(k)12] 

E[ Ilt.~s(k) - T'k(lt.~s + DRw!IRW] 

0";( ek) + E [ lT'k(lt.~s + D Rw!IRW] - E [2Re [lt.~s(k)1L~~T'r] ] 

O";(ek) + Wp(ek) - 2Re[ Rs(ek,{rili=l, ... ,R})T'r] (4.12) 

Here O";(ek) is the power of the stopband component at the corresponding sample, and Rs 

is the correlation matrix for vector yW. We obtain our expression for wp(ek) from (4.10): 
-s 

(4.13a) 

(4.13b) 

Here RRs is the correlation matrix E[lt.~s1L~~] (a submatrix of Rs) with singular value 

decomposition RRs = U DsU'H. We can use this to rewrite es(k) in (4.13) as follows: 

es(k) - T'kU DsU'HT'r 

T'ks D s T'i:s 
R-l 
L lT'ks(l) 1

2 Às,l 
1=0 

R-l 
< Às,max L lT'ks(l) 1

2 (4.14) 
1=0 

Às,maxlT'rI2 ( 4.15) 

Similarly, using À!,max for the largest entry of D~w, we can write eq(k) ::::; 0"~À!,maxlT'~12. 

Using this and (4.15) in (4.13) yields: 

(4.16) 
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In Chapter 5, where we discuss our results, we will see that (for the TFBD codes considered) 

the passband CSMSE Wp(ek) is a very good approximation to the temporal CSMSE We(ek), 

and hence (4.16) can also be used for the latter. Note that (4.16) gives a loose indication 

of the length required for the prototype filter: as long as Às,max is sufficiently smaller than 

(};À~, filters with deeper stopbands will not improve the upper bound on the passband 

CSMSE Wp . 

4.2 Expression for the Stopband Correlation Matrix of the 

Temporal Codevector 

The temporal reconstruction error Ww(ek) is expressed in (4.12) and (4.13) in terms of the 

stopband correlation matrix Rs, for which we now derive an expression. Assuming that a 

model is available for the input message sequence x[n], we wish to express the samples of 

the stop band component yW in terms of the input message samples. This will in turn allow 
-s 

us to express the stop band correlation matrix Rs in terms of the statistics of the input 

message sequence. This approach will enable us to obtain an exact form for Rs. However, 

the resulting form involves a matrix expressed in element-wise form, where each matrix 

element will consist of a quadruple sumo Assuming that the input sequence x[n] is i.i.d. 

will enable simplification to a double summation over a convolution. 

We consider first the vector J!..r (t~ for brevity) corresponding to the temporal codevector 

J!..~,Œ (J!..W) before windowing, where the window is assumed to have a length Lw = 2Dw + 1 

(cf. Fig. 3.1): 

( 4.17) 

The vector J!..Œ can be mapped to J!..w through Dw, the diagonal matrix containing the 

window along its main diagonal: 

( 4.18) 

Using (4.18) and the stopband operator F s given in (4.7), we can write yW (we omit the 
-s 
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subband index l) as yW = FsDwya and express Rs as: 
-s -

Rs E [lCU:'H] 

F sDwE [UaUa'H] D~ F"; 

F sDwRaD~ F"; (4.19) 

We now obtain an element-wise expression for the general form of Ra. The elements of Ra 

are given by (cf. (4.17)): 

Ra(c,d) E [U(c)U(:) ] 

E [ U(l) [ca] U(l) [da] ] 

(4.20a) 

(4.20b) 

where we let Ca = Ct - Dw + C and da = Ct - Dw + d. Using (3.6b) we get the following form 

(where Lf is the length of the prototype filter J[n]): 

Kb-1 Lf-l 

= K 2E[ L L G(I,m}!m[n]x[caK - n]Wj(:nKca 

m=O n=O 

Kb-1 Lf-l 

L L G(I,p)!;[q]x*[daK - q]Wk~da] (4.20c) 
p=O q=O 

m,n,p,q 

R ( K - d K _ )W-Cmca-pda)K 
x Ca n, a q Kb (4.20d) 

Note that the summation indices in (4.20d) take the same values as in (4.20c) and Rx(k, l) = 
E[ x[k]x*[l]]. Assuming that the message sequence is i.i.d. allows us to substitute the 

summation over q with the single non-zero term at q = (da - ca)K + n, the resulting form 

being: 

Ra(c,d) 
m,n,p 

Using (4.21) in (4.19), one can then compute the correlation matrix Rs ofthe stopband 
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component of temporal codevectors that is needed for the CSMSE computation in (4.12) 

and (4.13). 

4.2.1 Power of TFBD Code Samples 

Being the correlation matrix of the temporal codevector before windowing, Ra can be used 

to obtain an approximation to the power O"~ of TFBD code samples (i. e., the power for 

aIl entries of JL[n] in Fig. 3.1, at aIl times n). We do this by assuming that the prototype 

filter J[n] is an ideal lowpass filter (with cutoff frequency Je = 1/2Kb, as explained in 

Section 3.3). Referring to the convolution expression in (4.21b), the assumption of ide al 

J[n] zeros the convolution for aIl values other than m = p. Furthermore, we are only 

interested in the diagonals of Ra, and hence we can use do. = Ca, thus simplifying the 

convolution expression to the sum of magnitude-squared entries of J[n]; note that these 

same simplifications (m = p and do. = Co.) reduce the complex exponential in (4.21b) to 

one, and thus we can write the power of TFBD code samples as foIlows: 

[~'If(kI12] 
For the case wh en G is a simple, upper-parity matrix (as given by (1.3)), G(l,m) 

J-Ne-j27rkl/N The resulting form for O"~ will be 

( 4.22) 

Under practical considerations for J[n], the convolution operation in (4.21b) will not be 

exactly zero for values other than m = p. However, as we will see in Chapter 5 (for the 

cases considered), the approximation given by (4.22) will display a relative error better than 

10-5 , meaning that, for practical purposes, it is as good as the actual value. Note that 

the exact value for the power of a given TFBD sample can be obtained from the first Kb 

entries of the diagonal of Ra at the corresponding subband (the diagonal is Kb periodic). 

Power Spectrum of Temporal Codevector: The matrix Ra will also be useful in 

computing the power spectrum Sw of the temporal codevector. We define Sw as having 
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entries given by 

where yw is the DFT of the temporal codevector. We can express yw as foUows: 

yw = W Lw yW 
~ 

DwJL'" cf. (4.18) 
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where W Lw is the DFT matrix of size Lw. The entries of Sw will correspond to the diagonals 

of the correlation matrix of yw, as shown below, where we use diagkO to denote the k-th 

entry along the diagonal of a matrix: 

SW(k) - diagk(E[ywyw1-l]) 

diagk(W LwDwROiD~W~J ( 4.23) 

In Chapter 5, expression (4.23) will be useful as a tool for the selection of the parity 

frequencies of the temporal code. 

4.3 Disjoint DFT Codes and Pivoting 

In Chapter 3 we saw how an immediate benefit of TFBD came from the fact that either 

the temporal or subband code can be selected in order to avoid bursts when reconstructing 

erasures. This is possible because the reconstruction capabilities of the codevectors are 

disjoint: erasure recovery along the temporal orientation can be done entirely independently 

of erasure recovery along the subband orientation. With this, the TFBD code aUows us to 

entirely avoid bursts occurring along a single orientation (l-D bursts). The related increase 

in performance can be traded against the delay introduced by interleavers meant to reduce 

the occurrence of bursts. This would in turn increase the probability that bursts occur 

simultaneously along both orientations (2-D erasure bursts) and, as we will see, TFBD 

provides a tool for this situation in the form of pivots. 

We will use the term pivot to refer to a lost sample within a burst; as aU samples, it 

is common to a subband codevector and at least one temporal codevector, and a better 

estimate can be obtained along one orientation than the other (note this does not necessarily 

mean that the burst exists only along one direction). The reconstruction can be carried out 
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first along the orientation yielding the best estimate, and then the reconstruction pro cess 

is rotated (hence the analogy to mechanical pivots) and carried out along the remaining 

direction, where this new estimate is used as a 'received' sample. In this way, pivots can 

be used to break up a 2-D burst into smaller bursts, resulting in potentially several orders 

of magnitude of CSMSE improvement. 

A good indication of the benefit available through pivoting operations is given by 

Fig. 4.1. The figure plots the squared row magnitudes of a sample temporal reconstruction 

matrix (i.e., l'1"kI 2
) as a function of the index k of the corresponding erasure vector (also the 

row-index of the reconstruction matrix) for a burst of length 13, versus the case when the 

third sample in the erasure burst is assumed to be received. The row magnitudes are seen 

to decrease between one and three orders of magnitude and, with a pivot sample display­

ing a quality reconstruction, we can expect similar benefits given the similarities between 

CSMSE expressions of the temporal and subband codes (cf. (4.16) and (2.28)). 

We illustrate pivoting operations by considering the 2-D bursty erasure shown in Fig. 4.2, 

where the heavy lined region denotes the 2-D erasure burst being reconstructed, and we 

have highlighted the received samples of temporal code vector !L~,12, where Lw = 25. Our 

approach here (in selecting the reconstruction orientation) is merely illustrative, and in 

Section 4.3.1 we provide decision rules for certain pivoting operations. We first apply the 

subband codevector at frame column 12; this enables us to rotate the reconstruction pro cess 

by using the estimate Q(l) [12] as a new 'received' sample in carrying out reconstructions 

with the temporal codevector !L~,12. We will call Q(l) [12] a subband-to-temporal pivot, de­

noted by the symbol L1. Reconstruction along the temporal orientation (frame row 1) will 

now yield estimates of the lost samples in the indicated temporal codevector, and these 

will become temporal-to-subband pivots (denoted by ..CI) for the remaining reconstructions 

along the subband orientation. 

Probability of 2-D Erasure Bursts: Transmission of the TFBD code frame is done 

serially, its rows concatenated to form a single transmission vector. The reason why serial­

ization is done along the temporal orientation is that temporal codevectors will generally 

be longer than subband codevectors, and hence erasure bursts are more likely to fall along 

a single temporal codevector, resulting in 1-D (rather than 2-D) erasure bursts. For I-D 

temporal erasure bursts, all sample reconstructions can be done along the subband orien­

tation, thus avoiding burst reconstructions entirely. In this sense, the TFBD code displays 
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Fig. 4.1 Pivot effect on mw-magnitudes of reconstruction matrix: Row mag­
nitueds Itrl of reconstruction matrix T for a (25,11) DFT code. In the first 
case, T corresponds to a burst of size E = 7 erasures; the second case (E = 6) 
is that when the sample at position k = 3 (along erasure vector, position 
e3 of temporal codevector) is available. Quantization power is normalized to 
unity. Horizontal axis labels correspond to the erasure vector index (also the 
row-indices of T). 
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1 

o 6 12 18 24 
~~~~~~~~--~~--------~-----~--...-.,....., ,.......,......,.-.... -~~~--~~--~---~~--~~~ 

Fig. 4.2 2-D bursty erasure correction via pivoting: Row and column indices 
correspond to temporal and subband codevector indices, respectively. The 
heavy frame delineates lost samples. Circled indices represent the decoding 
order of codevectors, the order being irrelevant among codevectors with the 
same index. The symbol 11 denotes temporal-to-subband pivoting; .LI denotes 
subband-to-temporal pivoting. 
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a greater burst length tolerance than other reconstruction schemes, and hence a sm aller 

required interleaver length and associated delay. In turn, reducing the interleaver length 

increases the probability that erasure bursts will occur along two or more temporal code­

vectors, possible resulting in 2-D erasure bursts. In this case, the selection of pivot samples 

is less obvious, and thus we will now derive expressions that can be used in pivot selection. 

4.3.1 Selecting Temporal-To-Subband Pivots 

In this section we derive CSMSE expressions for the following simplified case: in using 

the subband orientation to reconstruct a subband erasure burst within a 2-D burst, which 

erased samples should we first reconstruct along the temporal orientation? Chosen samples 

will become temporal-to-subband pivots in decoding the subband vector under consider­

ation. The remaining samples will become subband-to-temporal pivots, and this can be 

justified in light of the geometrical model of Section 2.3.2, as discussed in Section 4.4 later 

on in this chapter. 

To arrive at our CSMSE expressions, we first create an expanded received vector ilRt 
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by modifying the received vector 1LR E CR to include the Rt available temporal pivots (1Lt): 

1LRt (4.24) 

( 4.25) 

where ~t represents the pivot error. Note that since the samples in 1Lt are reconstructions 

themselves, they will have an implicit error beyond quantization (e.g., the error for temporal 

reconstructions is given by (4.11)). We now only need to obtain the reconstructed vector 

Y..Et' and this can be done by forming the reconstruction matrix Tt corresponding to the 

case wh en aIl the samples in 1L
Rt 

were available to begin with: 

( 4.26) 

Using t kt for the k-th row of Tt, we obtain the pivoted subband CSMSE 'lisBt(ek) as 

follows: 

( 4.27) 

( 4.28) 

( 4.29) 

( 4.30) 

(4.31) 

where in (4.31) we have assumed that the set of quantization noise samples are i.i.d. and 

uncorrelated with the samples of the original codevector; as a result, they are also uncor­

related with the samples of ~t' 
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Using (4.31) and (2.28), we can now state an exact condition that can be used in 

selecting temporal-to-subband pivots ( 11 and .d represent subband-to-temporal and 

temporal-to-subband pivoting, respectively): 

( 4.32) 

The case of a single pivot sample can be easily written in exact form using (4.12): Rt 

in (4.31) will be a scalar given by ww(ep ), where we use the index p to denote the pivot 

position along the temporal erasure burst. We substitute into (4.31) to write the exact 

condition as follows: 

(J~lt~12 
'--v--" 
WSB(ek) 

( 4.33) 

Note that the row vectors tk, tkt and Tk correspond to the rows of the subband, pivoted, 

and temporal reconstruction matrices, respectively. 

4.3.2 Suboptimal Condition for Temporal-to-Subband Pivoting 

Given the form of RRt in (4.31) we know that the first R of its singular values are given 

by (J~; the remaining Rt will be those of Rt, which we group to form the diagonal matrix 

Dt. Using URt for the matrix of eigenvectors of RRt, we can rewrite WSBt(ek) in (4.31) as 

follows: 

(4.34) 

where we have let tk:j: = tktU Rt. We can again (cf. (4.16)) obtain an upper bound for 

W SBt (ek) by selecting only the maximum of the singular values: 

( 4.35) 
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Wh en one does not use pivoted samples in the reconstruction, the subband CSMSE 

'l! sB(ek) is given by (2.28) as a~lt;:12. We combine this with (4.35) to state a (suboptimal) 

condition for pivot selection: 

11 
max{a;;Dt(I,I) Il = 1, ... ,Rt} It~12 ~ a;ltrl2 

1:1 

4.4 The Geometrical Interpretation Revisited 

( 4.36) 

In Section 2.3.2 we presented a geometrical interpretation of the encoding operation of 

a general DFT codevector Ji.. = GÇf and the related reconstruction operation Ji..
E 

= TJi..
R

' 

We found that, in the presence of quantization, the encoding operation corresponded to 

a parallelogram lP defined by the quantization interval ~ (cf. Fig. 2.2). lP was known to 

contain the original message vector Çf. The error resulting from the reconstruction operation 

was given by the projections of this parallelogram onto the lines defined by the rows of G 

corresponding to lost samples. The analogy was extended in noting that by cutting down 

on the length of one or more of these projections, the corresponding dimensions of the 

parallelogram would be reduced along with its projections (along rows of G) related to the 

remaining reconstructions. 

Agreement of geometrical and mathematical model: The pivoting application of 

the TFBD code presented in the last section provided one possible means of cutting down 

on the available projections, and we now test (intuitively) how well our geometrical model 

agrees with the derivations. Consider the case when a single temporal-to-subband pivot 

sample is available to reconstruct bursts along the subband orientation. The subband 

erasure burst under consideration is a I-D burst of length 5 at positions 6, ... , 10, as shown 

in Fig. 4.3. The single pivot available is located in the 8-th subband. In Fig. 4.3, we 

plot the reference curve 'l!sB(ek) corresponding to subband reconstruction with no pivot, 

given in the right-hand side of (4.33). We also plot 'l! SBt( ek) (left-hand side of (4.33) ) 

corresponding to the pivoted subband reconstruction for various values of pivot CSMSE 

(i.e.) we sweep the scalar 'l!w(ep ) in (4.33); this corresponds to varying the positionjnumber 

of erasures along the temporal codevector providing the temporal-to-subband pivot). 

As predicted by our geometrical model, whenever the temporal reconstruction yields 
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a better pivot estimate than the subband reconstruction, all other samples in the burst 

benefit monotonically from the improved pivot estimate. Also, whenever the temporal 

reconstruction yields a pivot with the same CSMSE (no change in dimensions of lP) as the 

subband reconstruction, both si des of (4.33) pro duce the same CSMSE for the remaining 

burst samples, meaning that the geometrical model of Section 2.3.2 and the mathematical 

model derived in the present chapter agree. The reconstructed samples, however, can only 

benefit from the pivot estimate up to a point, as seen in Fig. 4.3, and this prediction of the 

mathematical model can also be explained in terms of the geometrical model: The single 

pivot sample can only vary the size of lP along a single dimension. At the li mit when there 

is no estimation error (i.e., estimate converges with the actual value), lP reduces to a line 

segment, and this segment will still have a non-zero projection onto the remaining rows of 

G. 

Temporal-to-subband pivots: In the previous pages we derived expressions that al­

lowed us to select temporal-to-subband pivots for a given subband burst (e.g., (4.33)). 
The samples that were not selected became subband-to-temporal pivots in carrying out 

reconstructions along the related temporal codevectors. To show that this yields better 

reconstructions for the temporal codevectors, we again consider the geometrical model: 

Selecting the subband-reconstructed samples will decrease the corresponding projected di­

mension of the parallelogram related to the temporal reconstruction. Hence the remaining 

projections (and associated reconstruction errors) will also be reduced. 

4.5 Summary 

We began the present chapter by showing mathematically how one could interpret the tem­

poral code as a DFT code. We then carried out a mathematical analysis that yielded the 

CSMSE expression for temporal reconstructions. We also derived the CSMSE expression 

for the related pivoting application, and showed how the expression coincided with the 

geometrical model of Chapter 2. We will begin the next chapter by verifying our deriva­

tions through simulations. Having thus certified the correctness of the expressions, we will 

analyze them and show how they can be used as design tools in the selection of the many 

TFBD code parameters. 
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Fig. 4.3 Pivoting and the geometrical interpretation revisited: Plot of sub­
band reconstruction CSMSE (W sB(ek), E = 5) vs. pivoted reconstruction 
CSMSE (WSBt(ek), as given by left hand side (4.33) with ep = 8) for various 
values of pivot error; (15, 10, 7) TFBD code. The horizontal axis corresponds 
to the subband codevector indices ek. The WSBt(ek) curves decrease mono­
tonicaUy (over aU samples ek) along with the pivot error up to a limit (heavy 
dashed line, \]! sB(ek), E = 4) corresponding to the case when the pivot sample 
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Chapter 5 

Results 

We begin the present chapter by verifying the expressions derived in Chapter 4 through 

simulations. After showing the correctness of the derivations, we use the expressions to 

construct plots that facilitate the design of TFBD encoders. The analysis will shed light on 

the selection of TFBD parameters including the temporal parity frequencies, the prototype 

filter, and the temporal window. 

5.1 Experimental Evaluation of Derived Expressions 

We begin first by verifying the expression for the stopband correlation matrix given in 

(4.19) for the case of i.i.d. input message sequence x[n]. We then verify the expressions for 

the temporal CSMSE Ww(ek) given in (4.12), and that for the pivoted CSMSE 'li SBt(ek) 

given in (4.33). In an cases the simulation results coincide with the derived theoretical 

values. 

5.1.1 Stopband Correlation Matrix 

In Fig. 5.1 we provide a sample surface plot of Rs (top of figure) as given in (4.19), along 

with the corresponding plot of the simulated version Rs,sim (bottom of figure). The subband 

generator matrix G (cf. Fig. 3.1 in pg. 32) used was a simple upper-parity D FT generator 

matrix of size 15 x 10 (as defined by (1.3)). The prototype filter J[n] used was a Kaiser 

lowpass filter of length Lf = 101, Kaiser parameter (3 = 2.0019, and cutoff frequency 

Je = 0.0523 (where J = 0.5 corresponds to angular frequency 71"). The temporal window 
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used was a rectangular window of unit entries with length Lw = 11. 

In Fig. 5.2 we plot the relative error between the entries of matrices Rs and Rs,sim 

displayed in Fig. 5.1. Fig. 5.2 consists of a surface plot of the relative error matrix Rs6., 

defined as having (k, l) element: 

R _1 RS(k,l) - Rs,sim(k,l) 1 
s6.(k,l) - R 

s,(k,l) 
(5.1) 

The maximum relative error was found to be -12.5 dB, and hence the derived theoretical 

expression coincides weIl with the experimental data. 

5.1.2 CSMSE of Temporal and Pivoted Reconstructions 

To verify the temporal and pivoted CSMSE expressions ((4.12) and left-hand side of (4.33), 

respectively), we carried out simulations and obtained the experimental CSMSE over 10,000 

frames. The input message samples x[n] were taken from a Gaussian distribution with 

variance 0.9; quantization noise was modeled using additive Gaussian noise with variance 

O"~ = 7.264 X 10-4 . For the prototype filter we used a Kaiser filter with Kaiser parameter 

f3 = 4, length Lj = 201 and cutoff frequency Je = 0.03 (where J = 0.5 corresponds 

to angular frequency 7r). The temporal window used was a rectangular window of unit 

entries with length Lw = 301. These parameters correspond to the second of two codes 

designed later in the chapter. The resulting TFBD code sample power (given by (4.22) ) 

was 0"; = 1.66429. As explained in Section 4.2.1, this value is an approximation, and the 

exact values can be obtained from the first Kb entries of matrix Ra for the corresponding 

subband. For this setup, the largest absolute relative error of the approximation was less 

than 10-5 . 

Both Fig. 5.3 and Fig. 5.5 plot the CSMSE versus the codevector sample index for aIl 

erased samples. In Fig. 5.3, the results are plotted against the derived theoretical value, 

given by (4.12), and shown to coincide. A single erasure burst of length Et = 5 starting 

at codevector index 150 along the temporal orientation (1-D burst) was simulated and 

reconstructed using the temporal reconstruction matrix T given by (4.9). Fig. 5.5 plots 

the simulated CSMSE for a subband erasure burst decoded directly (using T in (2.28) ) and 

with pivoting (using Tt in (4.26) ); again the simulated values are shown to coincide with 

the theoretical, given by (4.33) for both decoding methods. A subband burst of length 
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Es = 5 starting at codevector index 5 was used, and the selected temporal-to-subband 

pivot was the middle sample from a temporal burst of length Et = 3 located along the 

seventh subband. The figure illustrates a gain of more than three orders of magnitude 

for the pivoted sample, and more than one order of magnitude for the samples in the two 

resulting erasure bursts (relative to the subband TFBD code). Note that the results are 

only meant to illustrate the correctness of the derivations, as reconstructing aIl erasures 

along the temporal orientation would have been optimal. 

In Fig. 5.4 and Fig. 5.6, we repeat the experiments of Fig. 5.3 and Fig. 5.5, respectively, 

seven times each, and plot the relative error for aIl eight experiments with respect to the 

derived theoretical values (note that we have used bold markers for the relative errors 

corresponding to Fig. 5.3 and Fig. 5.5). As can be observed, aIl simulations are shown to 

coincide with the theoretical values within a 3% relative error. 

5.2 TFBD Code Design 

Now that we have experimentaIly verified the expressions derived in Chapter 4, we show 

how they can be used to design a TFBD encoder. We will first show how one can find the 

optimal set of temporal parity frequencies by minimizing the combined stopband component 

of the temporal CSMSE wW ' As one can exp ect , the optimal set will be a function of 

the filterbank's prototype filter !ln]. In turn, selecting the prototype filter and temporal 

window will represent a tradeoff between the reconstruction CSMSE Ww of the temporal 

code and the distortion introduced by the filterbank component of the TFBD (Tandem 

Filterbank / DFT) code. We will represent this tradeoff graphicaIly as a family of curves 

obtained by varying the prototype filter and temporal window. 

The ww/distortion family of curves will also be used to compare the magnitude of Ww 

relative to that of (i) the subband CSMSE and (ii) the CSMSE of the (N, K) DFT code 

that we use as a comparison benchmark. For pivoting operations to be applicable, it is 

necessary that reconstructions along both orientations yield comparable error magnitudes, 

and thus insight into the CSMSE along both orientations is necessary. Regarding the 

benchmark (N, K) DFT code: such code will be of the same rate as the (N, Kb, K) TFBD 

code in question and is thus the appropriate candidate to gauge the performance of the 

TFBD code. 

To finalize the chapter, we will select two TFBD codes and compare their pivoted 
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CSMSE to that of the corresponding benchmark (N, K) DFT code. The comparison will 

be made as a function of both the subband and temporal burst lengths. The results will 

show that for sufficiently long subband burst lengths, the TFBD code will be capable of 

improvements of more than four orders of magnitude. 

5.2.1 Selection of Temporal Parity Frequencies 

In Chapter 3 we discussed how the temporal code could be interpreted as a DFT code; the 

parity frequencies corresponded to the stopband of the temporal codevectors, and using this 

one could build a temporal generator matrix g and an associated temporal reconstruction 

matrix T. The question then is how to select the set of parity frequencies. The solution 

can be formulated as an optimization problem with the help of the temporal CSMSE 

expression ww(ek). One possible approach is to minimize sorne function of ww(ek) (e.g., 

component term, maximized over k), over aU sets of parity frequencies that are contiguous 

and centered at f = 0.5. 1 Applying this constraint on the possible sets of parity frequencies 

makes sense since we know that the temporal codevectors have a lowpass spectral shape. 

The optimization is thus reduced to a search (of linear complexity) over the number of 

elements Pw in the set of temporal parity frequencies. 

In Section 4.1.2 we derived the temporal CSMSE ww; we reproduce it here for conve­

nience, and further define the cross-term X ST and the combined stopband component ESB,c 

of ww: 

O";(ek) + TkRRsT~ - 2Re[ Rs(edrili=l, ... ,R})T~] 
"'-v-" ' 'V' 1 

es(k) XsT(k) 
2 D2 1-l + O"qTk RwTk' 
'-.,.-' 

(5.2a) 

eq(k) 

ESB,c(k) = O";(ek) + es(k) + XsT(k). (5.2b) 

Here O";(ek) is the stopband power corresponding to the k-th erased sample; Rs is the 

correlation matrix of the stopband component yW of the temporal codevector yW; RRs is 
-s -

the submatrix of Rs corresponding to the samples of yW with received indices; and D~w 
-8 

IThe more general problem would be the minimization over aH possible combinations (or sets) of Lw­
DFT frequencies, but the number of possible sets grows very quickly. For temporal window lengths of size 
Lw = 101, there are about 2.54 X 1030 possible combinations. 
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is a diagonal matrix with squared magnitudes of window entries corresponding to received 

samples along its diagonal. Note that the combined stopband component ESB,e su ms up the 

terms of \lIw that originate from the parity frequency component of temporal codevectors, 

and thus, its magnitude is specified by the set of temporal parity frequencies. 

In this work we use the following strategy in selecting the set of temporal parity fre­

quencies: as discussed above, we constrain our search to sets of parity frequencies that are 

contiguous and centered at J = 0.5, and thus we need only find the best set size Pw. The 

function that we minimize to find this best Pw is the maximum over k of the combined 

stopband component (ESB,e) of \lIw(ek)' The justification behind this is as follows: the 

temporal code is an approximation to a related (Lw, Lw - Pw) DFT code. The combined 

stopband component ESB,e is missing in the CSMSE expression of the related DFT code 

(cf. (2.28)) and thus we know that the temporal code will always perform worse than the 

DFT code by at least the magnitude of EsB ,e. 2 

In Fig. 5.7 we plot the maximum over k of \lIw(ek), its components eq(k) and EsB,e(k), 

and the subcomponents of ESB,e(k), es(k), O";(ek), and Xsr(k). We plot these terms as 

a function of the number of elements Pw in the set of parity frequencies, using a fixed 

temporal burst length of E = 4 erasures. We will refer to these as max-vs-parity curves, as 

they portray the maximum of the corresponding expression versus the number Pw of parity 

frequencies. The minimum value possible for Pw is E, the number of erasures, since a DFT 

code can correct at most Pw erasures; the maximum value is Lw - 1, as this corresponds 

to the minimum code rate of 1/ Lw.3 The parameters used in the figure are as follows 

(aIl parameters were chosen for illustrative purposes): The prototype filter J[n] used was a 

Kaiser lowpass filter oflength Lf = 201, cutoff frequency Je = 0.0528 and Kaiser parameter 

f3 = 10. The temporal window was a Hanning window of length 201, the message sequence 

power 0"; was set to 0.9, and the quantization noise was modeled as zero me an Gaussian 

noise with variance O"~ = 1.5259 X 10-5. As mentioned previously, parity frequencies are 

2The quantization noise component of the temporal code ( (]'~ T D~w T 11., cf. (4.12» is different to the 
CSMSE of the related (Lw, Lw - Pw) DFT Code ( (]'~ !rl:12, cf. (2.28)). Rowever, one can also apply 
the window w[n] to the corresponding received samples of the DFT code, and then the resulting CSMSE 
expression would become the same as that for the temporal code. Rence, since the temporal CSMSE 
Ww(ek) suffers from an additional combined stopband error component, we can assert that the related 
DFT code performs better. 

3 An (N, K) DFT code has P = N - K parity frequencies and a rate of KIN. The minimum code rate 
for a given N is liN (i.e., K = 1). The temporal code can be seen as an (Lw, Lw - Pw) DFT code, with 
minimum rate occurring at Lw - P w = 1, or P w = Lw - 1. 
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constrained to be contiguous and centered at f = 0.5. 
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Fig.5.7 Max-vs-parity curves: Maximum over k of ww(ek), ESB,c(k), eq(k), 
es(k), O';(ek), and XsT(k) (cf. (5.2)). The horizontal axis corresponds to the 
number of temporal parity frequencies Pw. See Fig. 5.8 for the corresponding 
plot of the temporal codevector power spectrum. 
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We refer first to the plot of eq (cf. Fig. 5.7): as the number of parity frequencies 

is increased, eq decreases monotonically, and this is expected as the row magnitudes of T 

decrease very rapidly with increased number of parity frequencies [9]. The shape of es can be 

explained in light of the lowpass spectral shape of the temporal codevectors ~w: As long as 

parity frequencies are added (i.e., Pw is increased) within the stopband of ~w, the reduction 

in row magnitudes of T sets the trend (es(k) = TkRsTJ:, cf. (5.2)). But as soon as parity 

frequencies begin to faH outside the stopband, the increasing magnitude of the stopband 

correlation matrix Rs begins to set the trend.4 The transition from stopband to passband 

4Here we use the magnitude of a matrix loosely, but it can be defined, for example, as the sum of 
squares of its diagonal elements, or as its spectral norm. 



5 Results 69 

drastically changes the magnitude of Rs, and this is seen as a rapid increase in es following 

the optimal Pw (found at Pw = 56). Following this transition, added parity frequencies 

fall in the passband '!Lw, and the magnitude of Rs is affected less drastically as parity 

frequencies of comparable power content are appended to the set of parity frequencies. 

Thus we can see a decreased slope for es, until eventually the diminishing slope is overcome 

by the decreasing row magnitudes of T. 

Since the cross term X ST is also composed of (a submatrix of) Rs and rows of T, we 

can expect that it will also follow a trend similar to that of es. This can be verified in 

the corresponding max-vs-parity curve in Fig. 5.7. The stopband power component 0"; 
also exhibits the drastic change in slope following the optimal Pw , and the diminishing 

slope as the parity frequencies venture into the passband. However, as one would expect, 

increasing the frequency components of the stopband vector yW increases the power of its 
-8 

entries monotonicaIly, and this characteristic is also shown in the plot. Note that, in this 

example, both the cross term X ST and the stopband power 0"; contribute very litt le to the 

net temporal CSMSE WW ' Under this situation, the passband CSMSE wp (cf. (4.12)) will 

be a good approximation to wW ' 

In Fig. 5.8 we have plotted the power spectrum of the temporal codevector and high­

lighted some selected sets of parity frequencies. Each set is highlighted with a color bar 

of alternating shade and unique thickness. Color bars are portrayed as layered on top 

of each other, the lower (thinner) layers highlighting sets of parity frequencies with more 

elements (higher Pw); the visible areas of each layer highlight the first few and last few 

parity frequencies for that value of Pw. The circled parity frequencies are the first and last 

frequencies in the optimal set (that minimizing the max-vs-parity ESB,c curve of Fig. 5.7). 

Only selected values are shown for Pw (Pw = 11,26,41,56,61,66,71,76,81, optimum value 

is italicized). Note that sets shown that are smaller (in number of elements) than the 

optimal set have a difference in Pw of 15 (Pw = 11,11 + 15, ... ,56). For larger sets we 

use a difference in Pw of 5 (Pw = 56,56 + 5, ... ,81). This uneven spacing in Pw is do ne 

to illustrate how fast the power spectrum grows with Pw after the optimal value, and this 

again explains the U-concave peak in es (and X ST ) in Fig. 5.7. 
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Fig. 5.8 Selection of temporal parity frequencies: Plot of power spectrum of 
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circled points correspond to fiw(k) at k values corresponding to the first and 
last parity frequencies in the optimal set. 
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5.2.2 The Prototype Filter and Temporal Window: CSMSE vs. Filterbank 

Distortion 

71 

The selection of a TFBD code's prototype filter J[n] and temporal window w[n] can be seen 

as a tradeoff between the temporal CSMSE ('l'w) capability of the code and the filterbank's 

distortion. In uniform filterbank design, the optimal prototype filter can be selected from 

a family of filters (e.g., Kaiser, windowed filters) by minimizing the filterbank's output 

distortion (see, for example, the work by Yiu and Grbié [19]). The temporal CSMSE 'l'w, 

on the other hand, benefits from stopbands with larger widths and greater attenuation. 

Wider stopbands allow for greater number of parity frequencies, resulting in smaller row­

magnitudes for the temporal reconstruction matrix [9]; greater attenuation will reduce the 

stopband component of 'l'w. 

In the following discussion we begin by defining a filterbank's amplitude distortion Ad 

and aliasing power Ap. We will then use these, along with the expressions derived in 

Chapter 4, to construct plots that will prove useful in selecting the 'l'w/distortion TFBD 

tradeoff. 

Quantifying Filterbank Distortion: Referring to Fig. 3.2, the first stage of the TFBD 

encoder consists of the analysis stage of a filterbank. Since the effect of the modulators and 

DFT generator matrices are reverted (assuming no erasures) at the decoder, the resulting 

received message sequence x[m] (cf. Fig. 1.1) can be seen as the output of an oversampled 

uniform filterbank with N subbands and a downsampling factor of Kb. One can express 

x[m] in the z-domain as [19] 

Kb- 1 

X(z) = L E1(z)X(zWk
b
), 

1=0 

where El(Z) is defined as: 

N-l 

E1(z) = ; L F(zWtWt)F*(zW~). 
b k=O 
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With this, we can define the filterbank's amplitude distortion Ad and aliasing power Ap as 

foIlows [19]: 

(5.3a) 

(5.3b) 

Temporal CSMSE / Filterbank Distortion Tradeoff: A use fuI tool in selecting the 

TFBD code tradeoff between temporal CSMSE and filterbank output distortion is a family 

of plots displaying the attainable tradeoff points as a function of the prototype filter and 

temporal window used. The plots will account for the temporal CSMSE side of the tradeoff 

by plotting (i) the minimax ESB,c (minimum of ESB,c in (5.2) over its max-vs-parity curve; 

see Fig. 5.7 for a sample ESB,c max-vs-parity curve) and (ii) the corresponding maximum 

row-magnitude of the temporal reconstruction matrix. The filterbank distortion side of the 

tradeoff will be accounted for by plotting Ad and Ap. For aIl curves (minimax ESB,c, row 

magnitudes of T, Ad, and Ap), the independent variable will correspond to a parameter of 

the prototype filter (e.g.) the cutoff frequency Jc). 
One such family of plots is displayed in Figs. 5.9-5.12. Each figure consists of four plots, 

and the horizontal axis in each plot is the value of the (normalized) prototype filter cutoff 

frequency Jc. AIl cases correspond to an (15,10,7)-TFBD code with simple upper-parity 

subband generator matrices G (as defined by (1.3)); aIl prototype filters used are Kaiser 

lowpass filters. The four plots in each figure correspond to Kaiser f3 parameter values 

f3 = 4,6,8 and 10. The first figure (Fig. 5.9) uses a filter length of Lf = 101; the remaining 

figures use Lf = 201. AIl figures use Hanning windows except the last one (Fig. 5.12), 

which uses a rectangular window. The window length for the first two plots is Lw = 101; 

the last two plots use Lw = 301. 

AIl the minmax ESB,c curves in the family of plots display a monotonicaIly increasing 

trend. The reason for this is that for the values of Jc that are displayed, the stopband 

attenuation of J[n] increases along with the cutoff frequency, resulting in temporal code­

vectors with larger parity frequency components. Another trend can be observed for the 

1'1"1 2 curves. Note that the 1'1"1 2 values displayed correspond to the max-vs-parity 1'1"1 2 curve 

(cf. Fig. 5.7) at the optimal Pw (value of Pw yielding the minimax ESB,c). In general, 
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the Irl2 curves increase until peaking near the center of the Je-axis, where they drop and 

then remain constant. The reason for this shape is as follows: Lower cutoff frequencies 

result in larger stopbands, and thus greater number of temporal parity frequencies Pw. As 

the cutoff frequency is increased, the number of parity frequencies decreases, and thus the 

increase in Ir1 2
. The cutoff frequency is increased to the point where a stopband is hardly 

d.iscernible. The corresponding ESB,e max-vs-parity curve for this situation would not ex­

hibit a pronounced dip for values of Pw corresponding to the stopband (cf. Fig. 5.7), and 

hence the minimum ESB,e along the curve would occur at the rightmost end of the Pw-axis 

(cf. Fig. 5.7), where the lower value of ESB,e is dictated by the decreasing row magnitudes 

of T. This is the reason for (i) the sudden drop in Irl2 throughout the family of plots, and 

(ii) for its constant value foIlowing this drop (i.e., Pw becomes fixed at its maximum value 

of Lw - 1). 

Thus, wh en constructing a family of plots such as the one in Figs. 5.9-5.12, one can be 

sure of having reached the maximum value of interest for Je wh en Irl2 faIls to a constant 

value (or equivalently, when the optimal Pw equals its maximum of Lw -1). The minimum 

value of interest for Je can be set by defining the maximum acceptable amplitude distortion 

(Ad = -10 dB, in our examples). 

Quantizer Selection: Both the temporal CSMSE and the subband CSMSE contain a 

term in Œ; (quantization noise power) and rk or tk (rows of temporal reconstruction ma­

trix T and subband reconstruction matrix T, respectively). The quantization noise power 

thus needs to be small enough to overcome the magnitudes of rows of both reconstruction 

matrices. For the case of ww , the combined stopband error component ESB,e will constitute 

a lower bound on the usefulness of reducing Œ; (cf. Fig. 5.7). In order for pivoting oper­

ations to be applicable, the CSMSE attainable along subband and temporal orientations· 

must be of comparable magnitudes. In this sense, ESB,e can also be seen as a lower bound 

on subband CSMSE improvement resulting from reduced quantization power Œ;. 
Hence, the choice of quantization power Œ; can be determined from the magnitudes 

of rows of subband and temporal reconstruction matrices T and T, and the combined 

stopband component ESB,e' For this purpose, along with the minimax ESB,e, we display the 

corresponding Irl2 curves in the family of plots of Figs. 5.9-5.12, as weIl as the maximum 

row magnitude of T (dot-dashed line of constant value). We also plot the maximum 

reconstruction matrix row magnitude for the (N, K) DFT code that we use as our evaluation 
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benchmark (dashed line, also of constant value). In selecting code parameters, we intend 

to balance the reconstruction performance of the temporal code to that of the subband 

code. For this reason we use a constant subband/temporal erasure burst length of 4 for 

aIl reconstruction matrices in the family of plots (including that for the benchmark DFT 

code). Note that for a (15,10,7) TFBD code, the subband code can reconstruct subband 

bursts of at most length 5. 

Effect of the Filter Length Lf : As one would expect, longer prototype filters can result 

in better amplitude distortion / Ww tradeoffs. We illustrate this by comparing the codes 

in Fig. 5.9 and Fig. 5.10. Both figures correspond to the same TFBD code, but in Fig. 5.9 

we use a filter length of Lf = 101, while in Fig. 5.10 we use a filter length of Lf = 201. 

With the shorter filter, one can achieve an amplitude distortion Ad of about -15 dB at 

a minimax ESB,c of -10 dB (for the cases j3 = 4 and 6). With a length 201 filter, it is 

possible to achieve Ad as low as -25 dB for the same ESB,c (j3 = 6 and 8). The increased 

length thus aIlows an improvement in filterbank amplitude distortion of -10 dB at a fixed 

ESB,c of -10 dB. 

Effect of Temporal Window: The temporal window also controls the spectral shape 

of temporal codevectors: increasing its length Lw will result in temporal codevectors with 

lower stopband frequency components. Thus increasing Lw should result in a similar effect 

to that achievable by increasing the prototype filter length Lw. This expected trend is 

confirmed in Fig. 5.10 and Fig. 5.11; therein we vary the length Lw of the window (Lw = 101 

and 301, respectively, Hanning window for both cases), while holding aIl other parameters 

fixed. As can be observed (Fig. 5.10, j3 = 8) at an Ad of about -26 dB, one can achieve 

an ESB,c slightly above -10 dB. For the longer window (Fig. 5.11, j3 = 10), it is possible 

to achieve an ESB,c that is 10 dB lower, at about the same Ad = -26 dB. 

It is not difficult to deduce the effect of using a rectangular window in place of the Han­

ning window: the rectangular window will result in larger temporal codevector stopband 

components, and with this an increase in ESB,c. We provide support for this in Fig. 5.12, 

where we have taken the setup of Fig. 5.11 and replaced the Hanning window by a rectan­

gular window of the same length. While the Hanning window makes it possible to achieve 

ESB,c values close to -20 dB at Ad close to -26 dB (Fig. 5.11, j3 = 10), at ESB,c values 

close to -20 dB, the rectangular window yields an Ad at about -11 dB (Fig. 5.12, aIl 
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values of (3), or 15 dB worse. 

5.2.3 Comparison to (N, K) DFT Code 

We now compare the reconstruction performance of two (N, Kb, K) TFBD codes selected 

from the family of plots in Figs. 5.9-5.12, to that of the corresponding (N, K) DFT codes. 

We use (N, K) DFT codes as comparison benchmarks because they operate at the same 

code rate KIN as the related (N, Kb, K) TFBD codes. The DFT code, however, can 

only reconstruct samples along the subband orientation, while the TFBD code can also 

reconstruct samples along the temporal orientation. As can be expected, the reconstruction 

performance of both codes will depend on the dimensions of the 2-D burst. 

The two codes we select for evaluation are those specified by dashed circles in Fig. 5.11 

and Fig. 5.12. Both codes are (15,10,7) TFBD codes and use window lengths of Lw = 301. 

The first uses a Hanning window and the second a rectangular window. In both cases a 

Kaiser lowpass filter was used as the filterbank prototype filter J[n], with Kaiser parameter 

(3 = 6 and Je = 0.04 for the first case, and (3 = 4 and Je = 0.03 in the second case. The 

resulting amplitude distortions for both cases where Ad = -15 dB and Ad = -11 dB, 

respectively. The resulting values for TFBD code sample power IT~ (as given by (4.22) ) 

where 2.23 and 1.66, respectively. As explained in Section 4.2.1, the expression for IT~ in 

(4.22) is an approximation, and the exact power for a given TF BD code sample can be 

obtained from the first Kb entries along the diagonal of Ra for the corresponding subband. 

For the setups under consideration, the approximation will display an absolute relative 

error better than 10-7 and 10-5 , respectively. 

To test the performance of the selected TFBD codes, we compare the temporal CSMSE 

'l1w of a given sample against the CSMSE of (15,7) DFT code reconstructions of the same 

sample. The 2-D burst used for the comparison had a cross formation, as displayed in 

Fig. 5.13, where the reconstructed sample used for the comparison is marked with an 

x symbol (the cross intersection sample). The cross intersection occurred at the middle 

position along each burst (i. e., odd burst length: middle sam pIe along burst; even burst 

length: extra lost sample below or to the right of the intersection). The example provided 

in Fig. 5.13 uses an odd subband burst length and even temporal burst length. 

In Fig. 5.14 and Fig. 5.15, we plot the ratio of 'l1w to the CSMSE of the DFT code 

(given by (2.28) [9]) as a surface plot, using the subband and temporal burst lengths (LB,T 
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Fig. 5.13 2-D cross formation erasure burst: TFBD frame with column 
indices indicated on top of the figure; the heavy frame delineates lost samples 
in 2-D cross formation, with odd subband burst length (LB,8B) and even 
temporal burst length (LB,T)' The intersection sample is marked with an x 
symbol. To evaluate the TFBD code, we reconstruct the intersection sample 
using the highlighted (N, Kb, K) TFBD temporal codevector, and compare 
the CSMSE to that of the (N, K) benchmark DFT codevector corresponding 
to the highlighted subband codevector. 

80 

and L B,8B, respectively) for the x and y axes. We have also drawn constant value lines 

(dotted lines) on the surface plots every decreasing decade starting at unity. At the top of 

Fig. 5.14 and Fig. 5.15 we use a single cross formation 2-D burst; at the bottom of both 

figures we use 30 extra lost samples along the temporal codevector (more than 10% samples 

lost), spaced every ten samples before and after the temporal burst. 

Fig. 5.14 and Fig. 5.15 indicate that for sorne subband burst length (LB,8B) / temporal 

burst length (LB,T) combinations, the TFBD code (using temporal reconstruction) can offer 

CSMSE improvement that can be as high as four orders of magnitude over the benchmark 

DFT code at the same rate. The temporal code can be seen to outperform the benchmark 

code for (LB,8B, LB,T )-pairs corresponding to longer subband erasure burst lengths and 

shorter temporal erasure burst lengths. This behavior is expected, as row magnitudes of 

reconstruction matrices (determining factor in both CSMSE expressions) increase rapidly 

with the length of erasure bursts. 

The setup of Fig. 5.14 resulted in an amplitude distortion of Ad = -15 dB, and for 

this case, improvements were observed for subband burst lengths as small as LB,8B = 
3. Of all 64 (LB,8B, LB,T )-pairs considered, 17 yielded temporal CSMSE benefits over 

the benchmark DFT code. Increasing the amplitude distortion to -11 dB (Fig. 5.15) 

enabled CSMSE improvements for subband bursts as small as L B,8B = 1; in this case, 29 
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of 2-D cross formation burst. LB,T and LB,SB are the length of the temporal 
and subband bursts, respectively. Contour lines drawn every 10-1 starting at 
unity. Setup as circled in Fig. 5.11. Top: single 2-D cross formation burst, with 
comparison sample at cross intersection (temporal position 150 and subband 
position 7). Bottom: same cross formation burst with 30 extra temporal 
erasures at positions 0,10, ... ,140, and 160,170, ... , 300. 
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out of 64 (LB,SB, LB,T)-pairs resulted in better temporal reconstructions. 5 These benefits 

remained constant even when extra temporal erasures were placed throughout the temporal 

codevector. 

5.3 Summary 

We began the present chapter by verifying the expressions derived in Chapter 4 experimen­

tally. After verifying their correctness, we used them to construct plots that represented 

the tradeoffs involved in TFBD design. We then selected two sample codes and tested 

them against a benchmark DFT code of the same rate. The results showed that TFBD 

was capable of improvements in reconstruction error of more than four orders of magnitude, 

depending on the dimensions of the burst involved. 

5The rectangular window is also capable of splitting bursts with frame boundaries, as discussed in 
Section 3.3.2. 
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Chapter 6 

Conclusion 

DFT codes over the real (or complex) field have been proposed [9] as a means for correcting 

errors and reconstructing lost data in packet-based network transmissions. Different au­

thors have recurred to a wide range of techniques to find various DFT decoding methods, 

resulting in an array of decoding algorithms applicable to DFT codes. DFT codes have 

been interpreted as block codes over the complex field, and decoding methods similar to 

those of finite field block codes are also available in the complex field. Blahut shows that 

DFT codes are a complex field version of Reed-Solomon codes [10], and error detection and 

sample reconstruction methods akin to finite field Reed-Solomon de co ding also exist in the 

complex field. Rath and Guillemot [8] presented an algorithm for DFT code error detection 

that was an extension to the ESPRIT algorithm of array processing theory. Marvasti et 

al. reformulated DFT code sample reconstruction as the zero-input solution to a linear 

constant coefficient difference equation [7]. 

With regards to sample reconstruction, a common problem with aU the available al­

gorithms is that for the case of bursty erasures (contiguous blocks of lost samples), the 

resulting MSE of the reconstruction (code sample mean square error, or CSMSE) is very 

large, growing quickly with the length of the burst [9]. We referred to this rapid growth in 

the CSMSE of the reconstruction as the bursty erasure phenomenon. For the difference­

equation-based reconstruction method of Marvasti et al. mentioned ab ove , the large re­

construction magnitudes were shown to be caused by zero clustering (resulting from bursty 

erasures) in the z-transform of the erasure locator polynomial. Rath and Guillemot [9] 

presented a geometrical interpretation of the same phenomenon: in the absence of quanti-
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zation, the DFT reconstruction operations corresponded to projecting the message vector J2 

onto rows of G with row-index corresponding to a lost sample index. Under quantization, 

the point J2 was known to exist within a hyperparallelogram JID; the projections of JID onto 

rows of G with received sample row-index were equal to the quantization interval length. 

Reconstruction CSMSE, on the other hand, corresponded to the projection of JID onto rows 

with lost sample row-index, and these were necessarily larger than the quantization interval 

(e.g., a diagonal of JID). Burst Y erasures particularly affected the length of diagonals of JID, 

and thus the associated sensitivity of the CSMSE to bursty erasures. 

A recent work by Labeau et al. presented oversampled filterbanks in the context of 

co ding theory, where filterbanks play the role of convolutional codes. The filterbank's 

polyphase matrix (z-domain matrix of size N x K, N > K) can be seen as a generator 

matrix for a code, and a corresponding orthonormal matrix would play the role of parity 

matrix. Using the resulting syndrome sequence (i.e., sequence resulting from running the 

input to the synthesis stage of the filterbank through the parity matrix), one could obtain 

an estimate for lost samples that was optimal in the mean-square sense. 

Motivated by the simplicity and decoding resourcefulness of DFT codes, and the po­

tential benefit in extending them from block codes to convolution al codes over the complex 

field, we began our work as a search for a convolutional code version of DFT codes that 

improved on their shortcomings when it came to bursty erasure. The result was a novel 

TFBD (Tandem Filterbank / DFT) code that achieves this goal by creating frames with 

rows and columns that can be treated as independent DFT codes. The codevectors along 

the columns of the frame are referred to as subband codevectors; those along the rows are 

the temporal codevectors. Erasure bursts along a given orientation can thus be avoided by 

carrying out the reconstructions along the remaining orientation. We further explored the 

possibility of using samples reconstructed along a given orientation, as received samples in 

reconstructions along the remaining orientations, a technique we referred to as pivoting. 

We realized the concept behind the TFBD code by deriving expressions for the re­

construction operations of the TFBD code. As the name suggests, the Tandem Filter­

bank / DFT code consists of a tandem arrangement of a filterbank and DFT encoder. The 

result is that the subband codevectors are exact DFT codevectors, and hence the CSMSE 

expressions presented by Rath and Guillemot [9] apply. Temporal codevectors, on the 

other hand, are windowed segments of signaIs with lowpass shape and hence violate the 

null parity frequency requirement of DFT codes. However, any practical DFT code imple-
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mentation must suffer quantization noise and non-null parity frequency components along 

with this. Rence, keeping in mind the near-zero stopband power of temporal codevectors, 

we derived exact expressions for the CSMSE of temporal reconstructions. The expressions 

were in terms of the correlation matrix of the stop band component of temporal codevectors, 

and thus we went on to derive a corresponding expression. Following this, we also derived 

expressions for the related temporal-to-subband pivoting application. 

After verifying that aIl our expressions agreed with experimental values obtained through 

simulation, we applied the derived expressions towards the design of TFBD encoders. The 

selection of the set of parity frequencies, for example, was done by minimizing the combined 

stopband error component of the temporal CSMSE over the number Pw of parity frequen­

cies in the set, where we constrained our search to those sets with parity frequencies that 

were contiguous and centered at f = 0.5. The choice of the prototype fiIter and temporal 

window was done by balancing the amplitude distortion of the TFBD filterbank and the 

temporal reconstruction CSMSE, keeping in mind that, in order for pivoting applications 

to be applicable, temporal and subband reconstruction errors had to be of comparable 

magnitude. 

After selecting two sample codes, we tested their performance against a benchmark 

DFT code at the same rate. The results were very promising: at amplitude distortions of 

-11 dB and -15 dB, the codes displayed a relative improvement in CSMSE of as much as 

four orders of magnitude. The relative magnitude of temporal to benchmark CSMSE was 

a function of the combination of subband and temporal burst lengths. As expected, longer 

burst lengths resulted in larger row-magnitudes of reconstruction matrices, and hence the 

trend was that the better CSMSE went to the code with shorter erasure bursts. At -15 

dB, 17 out of 64 combinations of subband/temporal burst lengths considered were in favor 

of the temporal code. At -11 dB, 29 out of 64 combinations went to the temporal code. 

The topic of constructing complex field convolutional codes for sample reconstruction 

can be considered to be a relatively new one. While the trend in communications technology 

research has moved from the original analog modulation methods to digital transmissions 

with finite field encoding, complex field encoding might seem somewhat anachronic. Row­

ever, it seems possible that such encoding methods might find their application in areas 

such as real-time multimedia transmissions, where the low delay (such as provided by DFT 

codes) is essential. Furthermore, the fact that codes such as the TFBD code do away 

with the assumption of flawless channel decoding used in designing tandem source/channel 
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coders might make them suitable for applications requiring high source code rates. Fer­

reira [11] mentions another interesting application as is the construction of parallel com­

puting systems with algorithm-based fault tolerance. Computing algorithms are usually 

thought up by the user as being carried out over the real or complex field (as opposed to 

over a quantized representation of this). Adding algorithm-based fault tolerance to such 

systems lends itself more intuitively to encoding formulated over the complex field. Labeau 

et al. trespass and then revert the analogj digital anachronism by proposing their oversam­

pIed filterbank (an encoder over the complex field) for the detection of erroneous symbols 

at a digital receiver. After aIl, signal constellations used in digital transmissions are defined 

over the complex plane. In aIl these and other applications, the TFBD codes presented in 

this work could find their place, and we leave such explorations for a later date. 
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Appendix A 

N otational Conventions 

1 Symbol 

x, X 

;12, X 

xT X T - , 

;12(k) 

;12 ( {ik Ik=l, ... ,N}) 

X(k,l) 

X(k,*) (X(*,l)) 

X (l, {iklk=l, ... ,N}) 

(X ({iklk=l, ... ,N},I)) 

f-axis 

Table A.l: Table of Notational Conventions. (Contin­

ued on next page ... ) 

1 Definition 

GENERAL CONVENTIONS 

Matrix or row vector. 

Vector. 

Transpose of ;12 or X 

Hermitian transpose of ~ or X 

Scalar corresponding to the k-th entry of vector ;12. 

Vector composed of the entries of ~ indexed by the set {ik 1 k = 

1, ... ,N} 
Scalar corresponding to the (k, l)-entry of matrix X. 

Row k (column l) ofmatrix X. 

Row (column) vector corresponding to the l-th row (column) of 

X indexed over the set {iklk = 1, ... ,N}. 

Represents the angular frequency axis [-7f, 7f] normalized to the 

interval [-0.5,0.5]. 
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1 Symbol 

Table A.l: Table of Notational Conventions. (Contin­

ued from previous page.) 

1 Definition 

ACRONYMS 

(N, Kb, K) TFBD Code Tandem Filterbank 1 DFT Code with generator matrix di­

mensions Kb x N and filterbank polyphase matrix dimensions 

K x Kb; the code rate is KIN. 

CSMSE 

T 

Code Sample Mean Square Error. 

SUBBAND DFT CODE (ALSO GENERAL DFT CODE) 

Original message vector, corresponding to the K-blocked version 

of the input message sequence x[m]. 
Original codevector. 

Received codevector before quantization, i. e., IL({rklk=l, ... ,R})' 

Erasure codevector before quantization, i.e., IL({eklk=l, ... ,E})' 

Quantized version of IL. 

Estimate of original codevector IL. 

DFT generator matrix; (N, Kb, K) TFBD subband generator 

matrices have size N x Kb. 

Reconstruction matrix of size E x R, E and R the number of 

erasures and received samples, respectively. 

Code sample mean square error (CSMSE) at position ek of re­

constructed codevector Q. 

TEMPORAL DFT CODE 

Theoretical message vector corresponding to the temporal code­

vector '1t(,Œ. 
Temporal codevector (for l-th subband) centered at time a, win­

dowed with w[n]. 
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1 Symbol 

9 
T 

Table A.1: Table of Notational Conventions. (Contin­

ued from previous page.) 

1 Definition 

Temporal codevector (for l-th subband) centered at time Œ, be­

fore windowing. 

DFT generator matrix related to the temporal code. 

Temporal code reconstruction matrix of size E x R, E and R 

the number of erasures and received samples, respectively. 

Code sample mean square error (CSMSE) at position ek of re­

constructed temporal codevector fr. 

DFT CODE INDEXING CONVENTIONS 

Received sample index along original codevector. 

Erased sample index along original codevector. 

PIVOTING 

Denotes subband-to-temporal pivoting; also used to denote a 

sample used as a subband-to-temporal pivot. 

Denotes temporal-to-subband pivoting; also used to denote a 

sample used as a temporal-to-subband pivot. 
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In Section 2.2 we discussed subspace methods for error detection, as presented by Rath 

and Guillemot [8]. The methods consisted in finding the complement (span{[VIII V E]}.l) 
of the error-erasure subspace; the error (and erasure) positions could be obtained from those 

e E 0, ... ,N - 1 yielding vectors 1!.e = [1, W N, ... , W~(l+E)lT not found in the complement 

space. We now prove that, as discussed in Section 2.2, the matrix S spans the error-erasure 

subspace exactly and thus its complement will be the same as the required complement 

space span{[V Il 1 V E]}.l. 
Matrix S was given by (2.20) in Section 2.2 as: 

S= 

~(d-E-l-l) 

~(d-E-l) 

~(I+E) ~(1+I+E) ~(d-l) 

(B.1) 

where the vector ~ is the syndrome of the received codevector iL We i) neglect quantization 

(il = ?L + .!!. + ~ = ?L + f, where, for simplicity, f = ~ +.!!.) and ii) assume that the d = 

N - K parity frequencies are contiguous starting at position qo. The resulting form for the 
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syndrome vector is 

W(N-l)qO ] N 

: é 

Wf-l)(Qo+d-l) 

(B.2) 

Each column of HH (H is the parity matrix, cf. Section 1.2.1) consists of powers of a single 

root of unit y, and those columns corresponding to the non-zero entries of f = ~ +!!.. consist 

of powers of the error and erasure roots X k = Wff (eo, ... , ev-l are the error positions; 

ev, . .. ,eE+v-l are the erasure positions). We can thus simplify (B.2) as follows, where 

f({ek}) denotes the vector composed of the entries {ek} = {eo, ... ,eE+v-l} of vector f (see 

Tbl. A.I, pg. 89, for a fulllist of notational conventions): 

[ X'" X® ] 
1 1 

X QO 

XlJ'~d_l 
v+E-1 X o X V+ E - 1 

o f(eo) 

§.= ... : f({ek}) = , (B.3) 
X Qo+d- 1 [X®, ] 

v+E-1 X d- 1 X d- 1 v+E-1 -(e",+E-l) 
0 v+E-1 

Note that in the second equality we have factored out the first entry from each column in 

the matrix, and moved it to the corresponding entry of vector f. Using this same approach, 

we can express the k-th column S (*,k) of S in (2.20) as follows: 

S (*,k) - §.(k,oo.,k+l+E) 

1 

Xo 

X I+E 
o 

1 

X v+E - 1 

Xl+E 
v+E-1 

'-----.v''''----' 
[Qo ... QV+E_l]=[V",IVE1; cf. (2.16),(2.17) 

X;~E_':("+EJ [x:~J 
Sinee the column index k only appears in the last vector factor in the expression, the 
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resulting form for S will be: 

, , , 0 X d
_

I
_

E
] 

X d- 1- E 
!-+E-l 

94 

(BA) 

This proves that S will span the error-erasure subspace, and hence its complement will 

be the required complement space span {[V Il 1 V E ]}l-, 

o 
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