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ABSTRACT

A new method is introduced that makes use of sparse image repre-
sentations to search for approximate nearest neighbors (ANN) under
the normalized inner-product distance. The approach relies on the
construction of a new sparse vector designed to approximate the nor-
malized inner-product between underlying signal vectors. The re-
sulting ANN search algorithm shows significant improvement com-
pared to querying with the original sparse vectors. The system makes
use of a proposed transform that succeeds in uniformly distributing
the input dataset on the unit sphere while preserving relative angular
distances.

Index Terms— Sparse representations, indexing, data condi-
tioning.

1. INTRODUCTION

Local descriptors computed on affine normalized image regions have
proven successful in computer vision applications requiring image
matching and recognition [1]. The selected regions are affine nor-
malized to be invariant under common transformations such as those
resulting from camera perspective or illumination changes. Different
descriptors y have been developed to describe the resulting normal-
ized image regions. At query time, a nearest neighbors (NN) search
is carried out between the query descriptor ¢y and the descriptor vec-
tors y, computed on the database images. Yet since local descriptors
are high-dimensional, they are subject to the curse of dimensionality
[1], meaning that the NN search complexity is very high.
Approximate nearest neighbor (ANN) searches based on vari-
ous sparse representation schemes have been recently proposed to
address the high computational complexity in local descriptor query
systems [2, 3, 4]. Given some sparse representation z, of each y ,
the search index will be the sparse matrix with columns z;,. This
sparse matrix index is stored in compact row-major format by group-
ing all non-zero coefficients of any given row (and their column
indices) to form a contiguous memory bin. This results in an im-
plicit complexity-reducing pruning mechanism when using similar-
ity measures based on the inner-product gng, as only the bins cor-
responding to the non-zero positions of z,, need to be processed.
The work carried out in the present paper uses sparse vectors
that are a dictionary-based sparse representation (DBSR) of the cor-
responding y: Given an overcomplete matrix D (the dictionary), x
will satisfy 5y = Dz + r. The chosen z produces an approximation
D2z minimizing the distortion |r| under a constraint on the number
of non-zero positions of z (a measure of rate). Using the sparse vec-
tors z built following a rate-distortion criterion raises a new prob-
lem: The residual transformations following the geometrical region
normalization result in descriptors y that have DBSR z with unsta-
ble support (positions of non-zero coefficients). This instability can
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severely impact the similarity score between regions and therefore
the ranking performance of the ANN search task.

In this paper, we address the problem of instabilities in the sup-
port of DBSRs x by first modelling the instabilities and then con-
structing, from x, a new vector which we call a reduced vector. The
construction of the reduced vector is formulated as a minimization
of the reference distance approximation error subject to a sparsity
constraint as, for sparse matrix indices, sparsity is related to both
memory and computational complexity. Computational complexity
is further maximized for a uniform distribution of non-zero positions
in z, which is in turn favored by a uniform distribution of y on the
unit sphere. Thus we further introduce a data conditioning method
which succeeds in approximately preserving the relative position of
data points y on the unit sphere while making their distribution more
uniform.

One potential application of our proposed method is that of
enhancing the performance/complexity tradeoff of bag-of-features
(BOF) indices [3]. BOFs make use of vector quantization (VQ),
which is a specific case of the more general DBSR framework. Thus
VQ again uses a rate-distortion criterion that does not favor a sta-
ble support of the resulting z, an issue addressed by our proposed
method.

A second potential application involves using x to design a low
rate image/local descriptors package for the case when the normal-
ized image regions are used directly as descriptors y. Transmitting
the z thus obtained yields an initial image estimate at no extra rate
penalty. Since the receiver requires x rather than y for querying or
indexing, including 2 in the transmitted package further exempts the
receiver from descriptor extraction and processing.

The rest of this paper is organized as follows: we present the
proposed reduced vector construction strategy in section 2. Our al-
gorithm makes use of an adaptive sparse correlation matrix, and we
explain how to obtain it in section 3. Our proposed data conditioning
method is then presented in section 4, and evaluated along with our
main approach in section 5. We provide concluding remarks in the
last section.

2. FORMULATING SPARSE SUPPORT SELECTION AS AN
OPTIMIZATION PROBLEM

We now explain the method used to build the proposed reduced vec-
tors from the sparse representations x. Reduced vectors enjoy a
more stable support relative to x and are thus better suited for ANN
searches based on sparse matrix indices.

Assuming all y = Dz + r to be normalized and compress-
ible (i.e., with negligible r), we first expand (gq,gb) as QZCD% =
Xflgb,where Cp = D'D and Xq = Cng; the operator (-, -) de-
notes correlation (normalized inner-product). Since computational
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and memory complexity are related to sparsity, we will build the re-
duced vector Xq by retaining only Iy = |z, q|0 coefficients from X,
at positions p € P; Xq will be zero elsewhere. We choose the lo
positions that minimize the distance approximation error:

P = argmin |(Xq - )”(q)tgb|2 st [P =1l <
P 9T

P = argmin \;zngﬁ st [P = lo, 1)
P

where Xq =X, ~ Xq is the complementary reduced vector.
Similarly to Xq = Cng, we can write Xq = Cng by defin-
ing Cp with rows equal to Cp at row indices p € P and zeros
. . . . ot t ~
elsewhere. Using this, the approximate distance X% = Zg Cpz,
is seen to have a general form gfz Cp z, related to the reference
system gégb: both can be generalized by QZC/ng,where gggb ne-
glects the cross-atom correlations with C’, = I. Thus we expect

and indeed observe in the results section that the proposed distances
consistently outperform gégb.

2.1. Exact solution for certain x,

In searching a solution to (1) we first note that, using P equal to
the sparse support of z, the approximation XZ% will in fact equal

(yq,gb) for all Y, = Dz, having z, with support contained in P.

Using subscript (-) to indicate vector components, we express the
resulting P and corresponding reduced vector X; as

P={p:a, #0} = X, @

2.2. Minimizing upper bound

The P given by (2) disregards the original problem formulation (1).
We present now a first solution to (1) that consists of substituting the
cost function ‘X;%F by the upper bound \Xq\2|@b|2. Dropping the
term |x,|? constant with PP, we write the resulting cost function as
\Xq|2 = Ser X, 0 |2, exposing the solution P as that excluding

the |P| = lo strongest terms | X, from the sum of squares:

‘2
(p)

P={p:vk¢P x>, =X @

2.3. Probabilistic approach

The solutions obtained in (2) and (3) disregard the index vectors x,
appearing in the original problem (1). We would prefer to build
reduced vectors x better suited to finding nearest neighbors from

within a particular index set {z, }. To this end we treat z, as a ran-
dom vector with realizations corresponding to the index set {x,}.
Taking the expectation over z, of the target function (1) produces

argmin X' Cpx s.t |P'| = lo, 4)
b a4 %

with Cp = E[z,z;]. Unlike (2) and (3), a solution to (4) is
not straightforward and could in general require a combinatorial ap-
proach wherein all ( ]\ZIUA) possible values for P are tried.
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2.3.1. Hybrid upper bound using first singular vector

We propose here a simplification of (4) that aims to adapt the sim-
plicity of P in (3) while considering the statistics of the index set.
To this end we consider substituting the cost function |Xq|2 used to

obtain (3) by |diag(v, )Xq|2, where diag(v, ) is the diagonal matrix

with v, along its main diagonal. The resulting solution thus takes a
simple form similar to (3):

P = {p : Vk ¢ P, |yl<p>x

2 2 o1
Xyl Z 2100 Xy | }qu, )

The vector v, needs to be a model for vectors z, that are good re-
sponses to z,. We note in particular that nulls v, ,,, will force the
corresponding positions & to be excluded from P. We propose here
using v, corresponding to the first singular vector of Cp. Later we
will show how to build an estimate Cp that adapts to z 4 and thus
yields a v, that is a good model of correct responses ;.

2.3.2. Approximate solution

The solution in (5) does not address the formulation (4) directly.
Thus, here we present an iterative approximation of (4) that con-
sists in selecting, at iteration [, the single position p; yielding the
greatest decrease in magnitude of the cost function when all previ-
ous positions P;_1 = {p1,...,pi—1} are nulled out. Letting qu,

denote the complementary reduced vector with nulls at positions P’,
and further letting Py be the empty set, we write this as

2
P= {Pl “Vk & Pro, ‘X;{'quym}cB <

~t
Xogpy_y iy OB

2.4. Query-side versus index-side reduced vectors

Up to now we have considered query-side reduced vectors Xq built
from the query vectors z, at query time, yet we can also consider
building index-side reduced vectors x, at index construction time.
The two approaches trade query overhead related to the construction
of the reduced vector for index construction overhead. The index-
side vectors Xb are built in the same manner as Xq by treating each
individual z;, in the same manner as the query vector z,, appearing
(implicitly) in expressions (2), (3), (5) and (6). Query-side reduced
vectors Xq use a sparse matrix index with columns z,; the corre-
sponding approximate distance is ngb. For the case of index-side
reduced vectors, the X, will instead comprise the columns of the
sparse matrix index with z,, as the query vector and resulting ap-
proximate distance gfz Xb. For brevity, we focus our discussion on
the case of query-side reduced vectors Xq.

3. CONSTRUCTION OF Cp

The sparse correlation matrix Cp is needed in (5) and (6) to build
the reduced vector Xq and we now consider its construction. We

will use an unbiased estimate \(:\%1 Zzh ce z,z; of Cp, where the
realizations 2, € C used are chosen as a function of Y, = Dx .
in one of two manners specified shortly. This adaptive approach
is meant to obtain better distance approximations X;Qb for stored
vectors Y, = Dy, that are more similar to Y . The estimate of Cg
thus built can be seen as a model for the instabilities in the sparse
support P of .



We propose two methods to obtain the realizations z, € C, a
two-stage method and an episode method. The two-stage approach
consists of first carrying out an initialization query using a sparse
matrix index with columns z; and a query vector X; built as in (3)
(note that z, and XZ could likewise be used as query vectors since
neither requires Cp). The first several realizations x, thus obtained
will comprise C, and the resulting estimate of Cp will be used to
build a reduced vector using (6) ((5) could likewise be used). The
second method of obtaining C relies on an assumed prior distribu-
tion o the data vectors Y, that can be used to obtain a set of similar

vectors y° referred to as the episode of y . The related sparse de-

compositions of the episode provide the realizations C. An example
of a possible assumed prior distribution would be the case where
the y, are noisy measurements; the episode would be obtained by

applying multiple realizations of the noise model to Y,

4. DATA CONDITIONING

We now present a data conditioning method that better adapts the
vectors y to the calculation of approximate distance using the sparse
matrix index. The method aims to more uniformly distribute data on
the unit sphere while preserving the relative positions of the original
data vectors. A uniform distribution is desirable because it maxi-
mizes the average minimum pairwise correlation min, (y, y'), thus
allowing for a larger distance approximation error without affect-
ing data ranking. Furthermore, a uniform distribution better dis-
tributes the coefficients of all x, amongst sparse matrix index row
bins. Query complexity is related to bin size and thus reducing the
largest bin size is a good complexity reduction strategy.

We express the desired uniform distribution and distance pre-
serving characteristics of the conditioned vectors y© as follows:

c Vi Jyfl=1
y N{ 0 otherwise and (72)
(v u5) (7b)

where Vi denotes the surface area of the unit sphere. We propose
an approximation of the conditions (7) based on a singular value
decomposition U, D, U, of E @gt] :

W) <@y, = ) <

D;l/ZUyE

=—=. 8
LD Uy °
The proposed approach is justified by noting that, since the y are
normalized, the singular vectors in U, are determined by concen-
trations of points on the unit sphere, with singular values measuring
the corresponding point density. Hence the vectors D, 1 2Uyy have
undergone anisotropic scaling along principal directions in a man-
ner inversely proportional to the point density; renormalizing subse-
quently spreads high density concentrations, thus addressing condi-
tion (7a). Regarding the second condition (7b), we consider the 2-D
case, where it is easy to see that anisotropic scaling and renormal-
ization preserves the relative neighbors of a given point along either
of two angular directions.

5. RESULTS

We construct our query and index vectors Y, and y b by extracting up
to 150 MSER [5, 6, 7] regions from images of the Holidays dataset
[2]. This results in 60,909 MSER regions of arbitrary size that are
affine normalized to size 11 x 11 and vectorized to obtain the query

w
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n
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Projection on u,,
Fig. 1. Distribution of projections of Y, (light lines) and y (dark
lines) on their first two principal vectors ul and u, versus 1dea1 dis-
tribution (solid line).

vectorsy € R*2!. To obtain the index vectors Y, we need to model
residual normalization errors as they cause instabilities in the sparse
support of . We do this by applying random affine transformations
of small magnitude to the original normalized query patches Y . The
transformations are defined as mapping the equilateral triangle with
vertices v on the unit circle to one with vertices v + n, where n is
a random vector taken uniformly over the circle of radius 0.3. For
each gq, we build 10 such realizations, for a total of 609, 090 index

vectors y, . Since we employ inner-product distances, both Y, and Yy,
are recentered using the mean vector calculated on the Y, set leen
the Y, and y, sets thus constructed, we further build vectors y and

yb usmg 8) tramed on the Y, - All sparse decompositions z are bu11t
using basis pursuit and the DCT dictionary of size 121 x 1024 [8].

We use |C| = 200 when building the two-stage reduced vector,
denoted %" to differentiate it from other % built using the episode
method; episodes are obtained assuming a prior distribution given
by the residual normalization model described above.

System performance will be measured by recall, i.e., the number
of correct realizations (up to 10) Y, retrieved. Complexity will be
measured by the total number of non zero coefficients in all index
bins accessed by the query. This measure neglects pre-processing
overhead (eg., sparse decomposition of Y, and query-side reduced
vector construction) yet this is valid since /) query complexity
is much larger than pre-processing overhead for sufficiently large
databases; 2) the application (discussed in the introduction) in-
volving a compact image/local descriptors package provides pre-
computed sparse representations; and 3) for compressible signals,
Xq (cf. (1)) can be obtained directly from gq with no need of z,

_ Dt _ Dt
=D ng =D y
systems relative to the reference distances

since X, We will compare our proposed

dl (£q7 gb)
dQ (&q 9 &b)

@Zgband (9a)
(ysmp)- (9b)

5.1. Evaluation of data conditioning

In Fig. 1 we evaluate how well (8) satisfies the uniform distribu-
tion condition (7a) by comparing the distribution of projections of
y, or ¥ unto their respective first two principal vectors u,; and u,.
Projections along the first two principal vectors deviated the most
from the ideal distribution, given by é( 1 — p2)*'9 with projec-
tion p € [—1,1] and « a normalization constant. It is evident from
the graph that the conditioning scheme succeeds in better distribut-
ing the data.
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Fig. 2. Recall of <yq, Y,)s (gg, y,) and [-2 distance on unnormalized
vectors y. The solid line is the ideal response.
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Fig. 3. Percent gain of X: in (6), &1) in (5), KZ in (2) and the two-
stage XZ The reference recall values are the best recall per rank of
(9) (given above the abscissa).

To evaluate the distance preserving condition (7b) we compare
average recall under (yq,yb> and (y;,yg) to the ground truth re-
call. Results are shown in figure Fig. 2, along with the recall un-
der the euclidean distance (with unnormalized Y, and gb) used else-
where [6]. Data conditioning degrades the response relative to the
unconditioned data, but the response is still of sufficient quality to
yield an advantage for 3¢ in a subsequent test.

5.2. Improvement over reference systems

We compare the various methods used to construct index-side re-
duced vectors X, from conditioned data vectors y° in Fig. 3. As a
reference we take the maximum recall (at each rank) obtained un-
der either reference system in (9) and plot the percent gain over this
reference. Note that all systems display a performance advantage.
In Fig. 4, QEX? (the best system of Fig. 3) and its query-side

version XZ ‘x, are compared against the reference systems (9). Both

unconditioned data y and conditioned data y“ are used to obtain the
sparse decompositions z. We first note that the y data results in a
wide spread in performance between both reference systems. The
systems based on x consistently outperform the related reference
system (9a), yet the reference system (9b) outperforms all.

The unconditioned dataset y° results in comparable performance
for both reference systems, indicating a more uniform sparse norm
|z]. The %" systems continue to improve upon (9a) and thus also
(9b). At a complexity of 10°, gf] )2: performs at a recall of 3.3 that
is 50% better than that of the best reference system, 2.2. Our data
conditioning scheme offers a clear advantage: for a fixed recall, X"
systems built using y¢ display a complexity improvement of 0.5 to
3 orders of magnitude relative to any system built using .
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Fig. 4. Recall at rank 500 versus query complexity when using the
proposed distances j’gstgb and @flfg: based respectively on query-
side and index-side reduced vectors (built as in (6)) and the reference
distances in (9). Solid (respectively dashed) lines are obtained using
the conditioned (unconditioned) datasets y (y©).

6. CONCLUSION

We introduced a method that succeeded in improving the perfor-
mance / complexity tradeoff when approximating the normalized
inner-product distance between compressible signals relative to ap-
proximations that use the sparse representations directly. The pro-
posed approach included a method for data conditioning that suc-
ceeds in preserving the relative positions of the original data points
while making their distribution uniform over the unit sphere. The
conditioning method is verified experimentally, and its application
to the distance approximation scheme proposed yields complexity
improvements as high as 3 orders of magnitude for the same perfor-
mance.
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