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Abstract—We introduce a new dictionary structure for sparse
representations better adapted to pursuit algorithms used in
practical scenarios. The new structure, which we call an Iteration-
Tuned Dictionary (ITD), consists of a set of dictionaries each
associated to a single iteration index of a pursuit algorithm. In
this work we first adapt pursuit decompositions to the case of
ITD structures and then introduce a training algorithm used to
construct ITDs. The training algorithm consists of applying a
K-means to the (i − 1)-th residuals of the training set to thus
produce the i-th dictionary of the ITD structure. In the results
section we compare our algorithm against the state-of-the-art
dictionary training scheme and show that our method produces
sparse representations yielding better signal approximations for
the same sparsity level.

I. INTRODUCTION

Sparse decompositions have become a very active research

topic in recent years. A sparse decomposition system is

comprised of (i) an overcomplete basis (called the dictionary)

and (ii) an algorithm that selects a small number of basis

vectors (called the atoms) and uses them to form a linear

combination approximating the signal being decomposed. The

representation is termed sparse because generally the selected

atoms will not span the entire signal space. Indeed the sparsity

of the representation can be quantified as the number of atoms

selected.

Much research effort has been devoted to taking advantage

of sparsity in various image processing applications. For

example: Guleryuz shows how adequate selection of a sparse

support can serve to reconstruct missing blocks in textured

areas [1]. Elad et al. use sparse decompositions to achieve

state-of-the art image and video denoising [2], [3]. Their

proposed K-SVD dictionary is also an important building

block for a facial image codec that outperforms JPEG2000

by a wide margin at low bit-rates [4]. All this applications

of sparse representations share the assumption that the sparse

decomposition system (including the dictionary and the atom-

selection algorithm) will produce good approximations of the
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input signal with a very small number of atoms, an assumption

referred to as the sparseland assumption [2].

In order to better satisfy the sparseland assumption, several

papers have addressed the issue of training dictionaries to

thus tailor them to specific signal classes. One of the more

recent dictionary training algorithms is the K-SVD algorithm

proposed by Aharon et al. [5]. The algorithm uses a pursuit

scheme to classify training vectors. An error matrix is then

assembled for each atom from the residuals associated to

training vectors in the atom’s class. Each atom is then updated

to minimize the related representation error.

The K-SVD algorithm illustrates the standard formulation

addressed by the various existing dictionary training schemes:

The aim is always to build a pool of atoms that will then be

made available to an oracle sparse representation algorithm

that will extract the hopefully correct atoms from the pool.

In practice, however, the sparse representation algorithm will

proceed in an iterative manner, choosing one atom at a time

while all previous atoms are fixed (examples of such algo-

rithms include matching pursuit and its variants [6], [7], [8]).

Note in particular that an iterative approach assumes that atoms

selected in latter iterations will differ (be linearly independant,

for the case of [7] and [8]) from those chosen in previous

iterations as otherwise they will not add new information to

the representation. This observation motivates our approach:

instead of assuming an oracle target sparse representation

algorithm when training a dictionary, we acknowledge the

iterative nature of practical decomposition schemes and the

fact that atoms chosen in latter iterations need to differ

from those chosen previously. We thus propose building a

layered dictionary structure where the i-th layer will contain

a dictionary Di (used during the i-th iteration) having atoms

that differ from the atoms of dictionaries Dj , j = 1, . . . , i−1
used in previous iterations. We refer to this structure as an

Iteration-Tuned Dictionary (ITD) as it will be the case that

the dictionary from the i-th ITD layer will display spatial

frequency components that vary with i.
In the remainder of the paper, we begin with a background

discussion on sparse decompositions that will further lay down

the notational groundwork for subsequent developments. In



Section III, we then introduce our new dictionary construction

scheme. In the results section (Section IV) we present visual

illustrations of the various ITD dictionary layers to show how

frequency components are structured across layers. We also

show that ITDs better satisfy the sparseland assumption than

the state-of-the-art K-SVD dictionary. We then conclude our

paper in Section V.

II. BACKGROUND

Sparse representations are based on an overcomplete (full-

rank and fat) matrix D referred to as the dictionary; the

columns of D are called atoms [6], [7], [8], [9]. Given said

dictionary, a sparse representation x of a signal vector y ∈ R
d

defines a linear combination of a few atoms of D. The

selection of the atoms is specified by the position of the non-

zero coefficients of x, while the coefficients themselves are

the weights of the linear combination. We will let |x|0 denote

the number of non-zero coefficients of x. Using this notation,

we can express the construction of the sparse representation

x as follows:

argmin
x

|y − Dx| s.t. |x|0 = Ly. (1)

The formulation specifies an x that minimizes the representa-

tion error of the resulting reconstruction ŷ
Ly = Dx under a

sparsity constraint Ly chosen, for example, to satisfy a pre-

determined maximum error. In our work, each non-zero entry

of x will be denoted by an atom-index/coefficient pair (ai, γi),
i = 1, . . . , Ly. For convenience, we group the atom indices ai

to form the ordered set

{ai} = {a1, . . . , aLy
}. (2)

The coefficients can be grouped similarly to form the vector

ΓLy =
[

γ1 . . . γLy

] t

. (3)

Thus the representation x is uniquely determined by the set

of atom indices and the corresponding coefficient vector:

{ai|ai ∈ [1, . . . N ], i = 1, . . . , Ly},Γ
Ly , (4)

where N is the number of atoms in the dictionary D.

In practice, the solution to (1) is obtained using a greedy

algorithm such as Matching Pursuit (MP) [6]. The algorithm

proceeds by selecting a single atom-index/coefficient pair

(ai, γi) at each iteration i. Given the first i ≤ Ly (ai, γi)
pairs, we can express the corresponding approximation ŷ

i as

ŷ
i =

i
∑

j=1

γj · daj
(5)

and the corresponding residual ri at the output of this iteration

as

ri = y − ŷ
i, (6)

= ri−1 − γi · dai
, (7)

where by convention we let r0 = y. The MP algorithm

proceeds in the i-th iteration by choosing the (ai, γi) pair that

minimizes the norm of the output residual ri. Formally, this

can be expressed as:

argmin
(ai,γi)

|ri−1 − γi · dai
| ⇐⇒ (8a)

ai = argmax
a

|d t
a · ri−1|, (8b)

γi = d
t
ai

· ri−1, (8c)

where superscript t denotes the vector transpose.

III. ITERATION-TUNED DICTIONARIES

The crux of our algorithm is that, when decomposing a

signal y using MP, a different dictionary Di is used at

each iteration i, one that is tuned to the spatial frequency

components associated to the space of residual vectors ri−1.

We will refer to the dictionary Di as belonging to the i-th
layer of an Iteration-Tuned Dictionary (ITD).

If we assume for now that we are given a set of ITD

dictionaries Di ∀i, ITD signal decomposition will follow

the same procedure as (8) by letting dai
instead denote the

ai-th atom of dictionary Di. Adapting the expression (4)

corresponding to fixed-dictionary sparse representations, those

obtained using ITDs will have the form

{ai|ai ∈ [1, . . . Ni], i = 1, . . . , Ly},Γ
Ly , (9)

where Ni is the number of atoms in the dictionary of the i-th
layer.

Regarding the ITD layer dictionaries: We will tune layer

dictionaries Di by training them on the residuals {ri−1} at

the output of the previous layer. We derive the procedure

by first formulating the problem optimally in the subsequent

discussion.

A. Construction of iteration-tuned dictionaries

Given some representative training set {y}, the construction

of the ITD layer dictionaries Di can be expressed as the

minimization of the aggregate representation error of the

training vectors y:

argmin
{Di|i=1,...,LM}

∑

{y}

min
{(ai,γi)}

∣

∣

∣
y −

[

da1
. . . daLy

]

ΓLy

∣

∣

∣

2

,

(10)

where we let LM denote the maximum layer index (we discuss

the selection of LM shortly).

The above formulation does not have an evident solution:

the difficulty in jointly selecting a large number of layer dic-

tionaries Di is further complicated by the optimal ITD sparse

decomposition in the inner minimization. Since in practice the

inner minimization will be solved using a greedy approach

such as MP in (8), we substitute the inner minimization in

(10) by the simplified MP decomposition problem in (8a).

The MP cost function has the interesting property that it is

only concerned with a single layer dictionary Di at a time.

Since the MP formulation requires the residual ri−1 at the

output of the previous layer, we need to assume that, when

constructing a given dictionary Di, all previous dictionaries

D1, . . . ,Di−1 have already been built and the corresponding



atom-index/coefficient pairs (aj , γj), j = 1, . . . , i − 1, have

already been selected. The resulting simplification of the

dictionary construction scheme in (10) is given below:

argmin
Di

∑

{ri−1}

min
(ai,γi)

∣

∣

∣
ri−1 − γi · dai

|2, (11)

B. The optimal dictionary for single-atom representations

Inspection of the ITD formulation in (11) reveals that each

dictionary Di will be used to obtain a single (ai, γi) pair for

each ri−1. As we now show, a dictionary thus employed can

be constructed optimally using the K-means algorithm under

the projection distance.

We will find it useful in the subsequent discussion to rewrite

(11) by grouping the summation into Ni terms according to

the atom dai
, ai ∈ {1, . . . , Ni}, selected for each ri−1. We

first define the class matrix Rai
consisting of those ri−1 that

use atom dai
in their single-atom representation,

Rai
, cols({ri−1

∣

∣ argmax
αi

∣

∣(dαi
) t · ri−1

∣

∣ = ai}), (12)

where the notation cols({a}) denotes the matrix of size

dim(a)×|{a}| with vectors a stacked side-by-side as columns.

With the help of the class matrix Rai
, the resulting form of

(11) is

argmin
Di

Ni
∑

ai=1

min
ω

|Rai
− dai

ω
t |2F , (13)

where (i) the square Frobenius norm |·|2F sums the square of all

matrix elements and (ii) the vector ω regroups the coefficients

γi (cf. (11)) of each training vector ri−1 contained in Rai
.

Note that Rai
itself depends on the optimization parameter

Di through (12).

A practical solution of the problem in (13) can be seen to

correspond to an instance of the K-means algorithm under

the projection distance: The dictionary is initialized using,

for example, a random selection of the training vectors ri−1

without repetition. The method then proceeds iteratively where

each iteration consists of two steps: (i) classifying each and all

vectors ri−1 into class matrices Rai
and (ii) updating the cor-

responding atom dai
so as to best represent the corresponding

class Rai
.

The classification stage consists of stacking all the vectors

ri−1 along the columns of one of Ni class matrices Rai

following (12).

In the atom update stage, the new atom dai
associated to

each Rai
is chosen to best represent the columns of Rai

:

argmin
dai

min
ω

|Rai
− dai

ω
t |2F . (14)

The term dai
ω

t can be seen to be a rank-1 approximation of

Rai
and thus the solution dai

is just the left singular vector

of Rai
associated to the strongest singular value [10].

C. Construction of subsequent layers

Following the construction of a given dictionary Di, the

input training residuals ri−1 are decomposed following (8)

using the newly constructed dictionary. The residual set {ri}
thus obtained is then used to train the subsequent dictionary

Di+1.

One question that comes to mind in the above-described

ITD training scheme is the stopping criterion that determines

the maximum layer index LM . As for the case of the fixed-

dictionary MP scheme [6], the i-th residual ri of an ITD

decomposition will not reduce to zero even for arbitrarily large

values of i. As done for the OMP [7] and OOMP [8] versions

of the MP decomposition rules in (8), one could force null

residuals at i = d (where d is the input signal dimension) by

constraining each residual ri, i = 1, . . . , d to be orthogonal

to all previously selected atoms. This approach would set

a practical bound LM = d on the number of ITD layers.

Another approach consists of choosing a number of atoms

Ly independently for each y so as to satisfy a predetermined

approximation error. The residual training sets {ri} can be

pruned accordingly by discarding those residuals with i ≥ Ly.

The maximum ITD layer index will then be LM = maxy(Ly).
In practice a combination of these two approaches can be used.

IV. RESULTS

We use to 545 frontal-pose facial images of different

individuals taken from the FERET database [11]. A subset

of 100 of these images will comprise the test set and the

remaining images will comprise a dictionary training set. We

chose the FERET database because it provides a large number

of uncompressed images and because it is comparable to the

facial database used by the K-SVD authors [5] (we compare

ITDs to K-SVD dictionaries). Throughout our experiments

we use signal vectors y consisting of vectorized versions of

8 × 8 blocks taken from each image on a regular grid. All

ITDs will be built with a number of atoms that is fixed for

all layers, Ni = N ∀ i. The maximum layer index will be set

to LM = 32 ≥ maxy(Ly) (we do not prune residual training

sets).

We carry out experiments with the following two purposes:

Firstly, we verify (through visual inspection) that the spatial

frequencies comprising ITD layer dictionaries Di increase

with the iteration index i. Secondly, we show that ITDs better

satisfy the sparseland assumption (with lower computational

complexity) when compared to the state-of-the-art K-SVD

dictionary [5]. Both of these qualities where motivating design

goals presented in the introduction (Section I).

In Fig. 1 we illustrate the first six layers of an ITD

constructed following (11). The ITD layer dictionaries Di

consist each of N = 128 atoms, and thus each dictionary is

2-times overcomplete (128/82 = 2). Note that the training

process induces a structuring of spatial frequencies across

the various layers: earlier layers have stronger low-frequency

content, with high-frequency content increasing along with the

layer index i.



Layer: 1 Layer: 2

Layer: 3 Layer: 4

Layer: 5 Layer: 6

Fig. 1. The first six layers of an ITD dictionary having N = 128 atoms in each layers.



1 1.5 2 2.5 3 3.5 4 4.5
30

32

34

36

38

40

|x|
0

P
S

N
R

 

 

ITD N=256,128,64

KSVD N=256; L=7,5,3

Fig. 2. ITD vs. K-SVD: Mean PSNR vs. mean l-0 norm when using the error
threshold stopping criteria in (15) (ǫ = 4, 6, 8, . . . , 22). Signal decomposition
is carried using OMP for K-SVD and MP for ITD. All K-SVD dictionaries
have N = 256 atoms and were trained using OMP with stopping criterion
L = 7, 5, 3 (dashed curves from top to bottom, at right). The ITD dictionaries
have N = 256, 128, 64 atoms (solid curves from top to bottom), with N fixed
for all layers i.

In Fig. 2 and Fig. 3 we evaluate how well ITDs satisfy the

sparseland model by plotting the mean l-0 norm |x|0 versus

the mean approximation PSNR 20 log10(
255

|y−ŷLy |
). The mean

is taken over all patches of all test images (a total of close to

6.5 × 105 patches). Three different curves are shown for the

ITD scheme. They correspond to three different values of the

number N of atoms per layer. From top to bottom in either

figure (solid-line curves), these values are N = 256, 128, 64.

As a reference, in both Fig. 2 and Fig. 3 we also plot

the same curves corresponding to the state-of-the-art K-SVD

dictionary [5]. We trained K-SVD dictionaries consisting of

N = 256 atoms using the code provided by the authors. The

training is carried out using OMP [7] with a sparsity-based

stopping criterion |x|0 = L. The three K-SVD curves shown

correspond to three different values of L. From top to bottom

in either figure (dashed-line curves, with order according to the

rightmost point in the curves), these values are L = 7, 5, 3.

The difference between Fig. 2 and Fig. 3 pertains to

the stopping criterion used to determine Ly during sparse

decomposition of the test images. In Fig. 2 we choose the

smallest Ly that satisfies a maximum RMSE threshold ǫ:

argmin
Ly

Ly s.t. |y − ŷ
Ly |2 ≤ d · ǫ2, (15)

where we recall that d is the signal dimension, y ∈ R
d. In

Fig. 3 we use an Ly that is fixed to an integer constant C:

Ly = C ∀ y. (16)

For clarity we point out that Ly denotes the sparsity of test

image decompositions while L (indicated in figure legends)
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ITD N=256,128,64

KSVD N=256; L=7,5,3

Fig. 3. ITD vs. K-SVD: Mean PSNR vs. mean l-0 norm when using the
sparsity stopping criteria in (16) (Ly = 1, 2, . . . , 10). Signal decomposition
is carried using OMP for K-SVD and MP for ITD. All K-SVD dictionaries
have N = 256 atoms and were trained using OMP with stopping criterion
L = 7, 5, 3 (dashed curves from top to bottom, at right). The ITD dictionaries
have N = 256, 128, 64 atoms (solid curves from top to bottom), with N fixed
for all layers i.

denotes the sparsity of decompositions used during K-SVD

training. Regarding the choice of stopping criterion (15) or

(16), we note that in practical scenarios the error threshold

stopping criterion in (15) is more likely to be used because

it adapts the sparsity level to each signal vector. Regardless

of the stopping criterion used, ITD decompositions are carried

out using the ITD adaptation of the MP algorithm in (8). K-

SVD decompositions are carried out using the more powerful

OMP algorithm.

From Fig. 2 we can conclude that ITD better satisfies the

sparseland model relative to K-SVD: For the same number of

atoms N = 256, the gain can be as high as 2 dB. Note that,

when using the same number of dictionary atoms N in both

ITD and K-SVD dictionaries, the resulting decompositions

will have comparable computational complexities (K-SVD

decomposition complexity will be higher because the OMP

coefficient calculation rule is more complex than the MP rule).

Yet the ITD performance benefit holds even for values of N
that are 2 and 4 times smaller (N = 128, 64, respectively) than

that corresponding to K-SVD (N = 256). For these smaller

N = 128, 64, ITD will enjoy an even higher complexity gain

(besides the performance gain illustrated by the curves).

In Fig. 3 we show that the ITD performance benefit over

K-SVD also holds when using the sparsity stopping criterion

in (16), but only for the ITD having the same number of atoms

per layer N = 256 as the K-SVD dictionary (i.e., for the case

of comparable decomposition complexity). For smaller ITD

dictionaries (N = 128, 64), the performance falls below that

of K-SVD for sparsity values in the neighborhood of 5. Note

however that, for smaller sparsity values in the range 1 − 2,



ITD still outperforms K-SVD even for N = 128, 64. One

would expect that, given the PSNR difference between ITD

and K-SVD at these lower sparsity values, ITD will result

in a greater number of weak residual vectors (i.e., residual

vectors having small magnitude) starting at iteration i = 3.

Adding (ai, γi) pairs to weak residuals results in marginal

PSNR improvement. Given the greater number of ITD weak

residuals from i = 3 and onwards, we can expect (and indeed

observe) a reduced curve slope for ITD when compared to

K-SVD. Note that this is not observed in Fig. 2 because,

when building the sparse decompositions corresponding to that

figure, weak residuals will no longer produce (ai, γi) pairs as

a consequence of the error threshold stopping criterion in (15).

Finally we note how Fig. 2 and Fig. 3 make evident the

dependance of fixed-dictionary schemes on the target sparsity

level: training K-SVD dictionaries with different values of

L results in dictionaries having performance that depends

on the desired sparsity. In the figures this results in K-

SVD curves with relative positions that become inverted when

moving from left to right along the horizontal axis. Real life

scenarios often require algorithms that are flexible and capable

of performing well at all sparsity levels. In the context of

image and video compression, for example, such flexibility

enables representations with bit-streams that scale with the

available bandwidth. The ITD algorithm manages to better

address scalability because each dictionary is optimized to a

single iteration index i and hence does not depend on a pre-

specified signal sparsity.

V. CONCLUSION

In this paper we introduced the Iteration-Tuned Dictionary

(ITD) for sparse representations. ITDs are better suited for

sparse representations using pursuit algorithms because they

provide a different dictionary Di for each pursuit iteration i.
Each Di is tuned to the spatial frequency components of the

residual class at the output of the previous iteration i − 1.

We first presented an ITD adaptation of matching pursuit and

then proposed a corresponding ITD training algorithm. Our

resulting setup produced reconstructions displaying up to 2
dBs of improvement over reconstructions based on state-of-

the-art trained dictionary schemes at the same sparsity level.
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