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Image Compression Using Sparse Representations
and the Iteration-Tuned and Aligned Dictionary

Joaquin Zepeda, Christine Guillemot, and Ewa Kijak

Abstract—We introduce a new image coder which uses the It-
eration Tuned and Aligned Dictionary (ITAD) as a transform to
code image blocks taken over a regular grid. We establish experi-
mentally that the ITAD structure results in lower-complexity rep-
resentations that enjoy greater sparsity when compared to other
recent dictionary structures. We show that this superior sparsity
can be exploited successfully for compressing images belonging to
specific classes of images (e.g., facial images). We further propose a
global rate-distortion criterion that distributes the code bits across
the various image blocks. Our evaluation shows that the proposed
ITAD codec can outperform JPEG2000 by more than 2 dB at 0.25
bpp and by 0.5 dB at 0.45 bpp, accordingly producing qualitatively
better reconstructions.

Index Terms—Image coding, learned dictionaries, matching pur-
suit algorithms, sparse representations, transform coding.

I. INTRODUCTION

A SPARSE representation of a signal consists of a linear
combination of vectors known as atoms taken from a pre-

defined, generally overcomplete transform known as the dic-
tionary. The representation is called sparse because it employs
only a small number of atoms from the dictionary. Signals that
can be well represented sparsely are termed compressible under
the given dictionary. Knowing beforehand that a class of sig-
nals is compressible in a given dictionary has proven to be a
very powerful tool. For example, an added sparsity prior can
be exploited to render an undercomplete linear system solvable.
A good example of a practical application of this property is in-
painting [1], where a missing signal region can be reconstructed
from a neighborhood. Other common applications of sparsity
include image denoising [2] and texture separation [3].

The application considered in this paper is image compres-
sion, where sparse representations consisting of only a few
nonzero coefficients are ideal to produce compact representa-
tions of image blocks. Indeed the JPEG [4] standard is based
on the premise that natural images are compressible in the DCT
basis. Its successor, the JPEG2000 standard, instead substitutes
a wavelet basis that better satisifies the compressibility require-
ment for natural images. An adaptation of the JPEG standard
is still very much in use for intra-coding of video frames in the
H.264 standard [5]. However, note that compression algorithms
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based on DCT or wavelet transforms are generic, in the sense
that they are not tailored to particular classes of images.

On the other hand, recent research effort has been dedicated
to learning dictionaries which would thus be adapted to a signal
class for the purpose of image compression. By using a learned
dictionary, the image encoder can benefit from the ensuing
greater compressibility of the considered signal class. An
example of this approach is embodied in the facial image codec
based on the -SVD dictionary introduced by Bryt and Elad
[6]. Their approach nonetheless employs a piecewise-affine
warping of the face that ensures that the various facial features
coincide with those of a pre-specified face template. Each
block of the face template (corresponding roughly to a facial
feature such as the nose) defines a class of signals that is then
represented with a corresponding -SVD dictionary. Thus,
the compressibility of the image blocks in that approach relies,
to a large extent, not on the -SVD dictionary but rather on
the affine warping procedure. This warping procedure in turn
increases the codec complexity and is further sensitive to image
variations encountered in practical scenarios (e.g., in lighting
conditions, pose and particularities of the subject).

Another example of an image compression system based on
trained overcomplete dictionaries is that developed by Sezer
et al. [7]. Their dictionary structure consists of a concatenation
of orthogonal bases. A single one of these bases is selected to
encode any given image block of fixed size. This approach has
the advantage that it reduces the atom-index coding overhead,
yet this comes at the cost of reduced effective dictionary size.

Recently, the Iteration-Tuned Dictionary (ITD) framework
has been introduced [8], [9] consisting of a dictionary structure
adapted to the iterative nature of greedy pursuit algorithms such
as those of the matching pursuit family [10]–[12]. In the ITD
framework, the dictionary used at the different iterations of the
iterative pursuit algorithm vary along with the iterations. These
dictionaries are trained to be adapted to the characteristics of the
residues produced in sucessive iterations. The Iteration-Tuned
and Aligned Dictionary (ITAD) [9] is a particular ITD variant
which implements a tree-structured ITD scheme, employing a
set of rotation matrices to reduce the storage overhead of the
tree structure. The resulting scheme shares some similarities to
gain-shape vector quantization (GSVQ) and multi-stage vector
quantization (MSVQ) [13]. Relationships between Sparse Rep-
resentations (SR) and GSVQ have previously been pointed out
in [14]: in both cases, atoms (codevectors in vector quantization
terms) are selected (one for GSVQ, multiple for SR) each along
with a real-valued representation coefficient. ITAD is further
similar to MSVQ in that the th atom selection is done using the

th residual as an input to the th dictionary stage (called
a layer in the context of ITAD).
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In this paper, we introduce a new image codec for image
classes based on the ITAD transform trained for the particular
image class. In the codec we introduce, the ITAD transform
is used to encode the mean-removed image blocks, while the
block-mean is encoded using a common DPCM-based arrange-
ment. The ITAD transform coefficients are encoded using a
simple uniform quantizer/entropy encoder combination, while
the atom indices are encoded using a fixed-length code. We
further introduce a new global method for jointly selecting the
sparsity of the image blocks based on a rate-distortion criterion.
The proposed ITAD codec is shown to outperform the JPEG
and JPEG2000 compression standards in quantitative and qual-
itive evaluations when used on specific classes of images such
as facial images, for which the transform can be well adapted.

We begin in the following (Section II) by first reviewing the
ITAD structure that is at the core of our codec. Then, in the sub-
sequent (Section III), we introduce the codec structure and, in
particular, develop a global (image-wide) rate-distortion crite-
rion that allows us to better select the sparsity of each of the
component image blocks. In the results (Section IV), we first
compare the ITAD dictionary that is at the heart of our codec to
other recent (learned) dictionaries and thus demonstrate the en-
hanced compressibility that it provides. We then carry out both
quantitative and qualitative evaluations of our codec, comparing
it against both JPEG and JPEG2000 standards. Finally, we pro-
vide some concluding remarks in the conclusion (Section V).

II. BACKGROUND: THE ITERATION-TUNED AND ALIGNED

DICTIONARY (ITAD)

Given a dictionary , a sparse representation of a
signal vector defines a linear combination of atoms

(assumed unit norm) which are defined as columns of matrix
, such that . The sparsity is small compared

to the dimension of input signal vectors, and generally either
fixed or determined for each vector based on a distorsion error
criterion.

For each iteration of an iterative matching pursuit (MP) de-
composition [10], the atom of the dictionary that best ap-
proximates the input vector is selected and the associated coeffi-
cient is computed, until the sparsity is reached. Denoting an
input vector of the th iteration as , and starting with ,
the column index in the dictionary of the selected atom at the
th iteration and its associated coefficient are computed as

follows:
(1a)

(1b)

where we assume that . Then at the output of the th
iteration, the residual is defined as

(2)

and the signal approximation satisfies

(3)

The proposed ITDs are overcomplete dictionaries that are
structured to better suit the iterative nature of greedy pursuit de-
composition algorithms such as those of the matching pursuit

family [10]–[12]. This means that a different dictionary is used
at each iteration of the sparse decomposition. In the simplest
case, one can consider one unique dictionary per iteration
(also referred as layer ) [8]. In a more general way, there can be
several candidate dictionaries per layer . Then ITDs consist of
a sequence of layers, with each layer containing a set of dic-
tionaries . For simplicity, we assume throughout that
every dictionary of any layer contains the same number
of atoms.

An ITD-based matching pursuit (ITD-MP) decomposition
proceeds as for the case of traditional fixed-dictionary decom-
positions until pairs (atom-index, coefficient) are chosen,
except that atoms selected at each iteration belong to different
dictionaries. Thus, for each iteration , a candidate dictionary

is first chosen, and then an atom and a
coefficient are selected according to the MP selection rules
(1). One problem with this approach lies in the selection of the
dictionary among the candidates at iteration . We
address this problem in the following while defining a relation
between the dictionaries of the different layers based on a
tree-structure.

A. Tree-Structured Iteration-Tuned Dictionary

The Tree-Structured Iteration-Tuned Dictionary (TSITD)
[9] is an ITD variant in which each candidate dictionary

of a layer is the child of an atom
from the previous layer . Thus the

candidate dictionary selected at the th iteration of the pursuit
decomposition is the child of the atom chosen in the previous
iteration. Hence, each dictionary is uniquely specified by
the ordered sequence of ancestor atoms , selected in
all previous layers. Then to simplify notations, each dictionary

can be uniquely designed by a path through the tree
defined by the sequence of column-index of its ancestor atoms

, with and being the unique
dictionary in the first layer.

Using these notations, the MP atom-index and coefficient se-
lection rules at the th TSITD layer can be written as

(4a)

(4b)

where and again we have assumed
that .

We group the atoms selected up to the th pursuit iteration to
form the selected-atoms matrix

(5)

Accordingly grouping the representation coefficients to form
the coefficients vector , we denote the re-
sulting approximation at the output of the th layer as

(6)

1) TSITD Training: The TSITD structure training is per-
formed according to a top-down approach in which each TSITD
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layer is trained using the th residuals of a training set. Ac-
cording to the MP decomposition rules, at each layer a single
atom from will be chosen to approximate a layer’s input
residual. Then the output residuals of the th layer are parti-
tioned into subsets according to which atom-index has
been selected. Each of the resulting residuals subsets
is used to train the corresponding dictionary in the next
iteration.

The training procedure of each is similar to the K-SVD
algorithm [6] when the sparsity constraint is equal to 1, and
proceeds as follows. First, is initialized with a random se-
lection, without repetition, of training vectors from the set of
training residues produced by the parent atom
(by convention, ). Then, a classification and an
update step are repeated until convergence. During the classifi-
cation step, each training vector is assigned
to an atom according to (4a). We define the class
matrices having as columns the training
residual vectors that are projected onto .

Each atom is then updated using the first left singular
vector of the corresponding training class matrix , where
the singular vectors are assumed ordered according to de-
creasing magnitude of their singular value. Once the algorithm
has converged, the coefficients are obtained from (4b), and
the residues used as input for the following layer can be
computed (2).

2) TSITD Properties: The tree-structure of the TSITD
scheme combined with the particular dictionary training
scheme results in two implications [9] that will be useful in
the remainder of the paper. First, TSITD candidates produce
selected-atoms matrices that are orthogonal:

(7)

Second, it follows from the above that all the atoms of a dictio-
nary must be orthogonal to all its ancestor atoms appearing
in

(8)

This last expression implies that the rank of is ,
and thus, using an adequate rotation matrix, the atoms of
(which are contained in the signal space ) can be expressed
equivalently in the reduced space . Formally, this rela-
tion can be stated as follows for a given candidate dictionary

:

(9)

where is a rotation matrix and
is the reduced-space representation of the candi-

date dictionary.

B. ITAD Structure

The ITAD structure aims to reduce the storage footprint of
the TSITD tree by constraining all of a given layer to be
equal. We use to denote this reduced dictionary common to
all nodes of layer and refer to it as the prototype dictionary of

Fig. 1. TSITD structure and training residual subsets.

FIg. 2. The ITAD structure. The equivalent signal-space representation is il-
lustrated in Fig. 1. We use subscript � indices to differentiate the atoms �
(and their corresponding alignment matrices ��� ) of the same prototype dictio-
nary � .

the th layer. The storage gain follows from the fact that a single
prototype dictionary needs to be stored per layer as opposed
to one reduced dictionary per node.

The rotation matrices can also be stored efficiently by
factoring them as , where
are called alignment matrices and carry out the dimensionality
reduction of residuals at the output of successive layers.1 Each
alignment matrix is uniquely associated
to the atom of the prototype dictionary .

This is illustrated in Fig. 2.

C. Signal Decompositions and Reconstruction Using ITAD

The ITAD structure illustrated in Fig. 2 can be used directly
to implement an ITAD adaptation of the MP decomposition al-
gorithm by first defining the reduced residuals as follows:

(10)

1Any ��� � satisfying ���� � � � � will accomplish this
task, and thus the ITAD alignment matrices are further chosen (cf. Section II-E)
to better structure the residuals for representation with the single prototype dic-
tionary of the next layer.
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where, by convention, we let . Using this definition, the
MP atom and coefficient selection rules at the th ITAD layer
follow directly:

(11a)

(11b)

The structure in Fig. 2 can also be used directly to carry out
the reconstruction operation by defining the reduced accumu-
lator vector

(12)

where, by convention, we let . The final reconstruction
is given by .

D. Reduced-Space/Signal-Space Representations

The ITAD structure based on reduced candidate dictionaries
(i.e., prototype dictionaries) illustrated in Fig. 2 has two
practical advantages over the equivalent representation that uses
the signal-space tree structure: First, the ITAD structure in Fig. 2
has a storage footprint that is significantly smaller than that
of the signal-space tree-structured representation. Second, car-
rying out the decomposition and reconstruction operations in
the reduced spaces (as discussed in Section II-C) decreases the
combined decomposition/reconstruction complexity for high ,
making it even lower than that of traditional fixed-dictionary
schemes using OMP.

While the signal-space dictionaries will not enjoy these
advantages, we will find them, nonetheless, useful for analysis
purposes in Section III and onwards given that the signal-space
decomposition and reconstruction expressions [(4) and (6)] are
simpler than the corresponding, mathematically equivalent, re-
duced-space operations [respectively, (10), (11) and (12)].

E. ITAD Training

The ITAD structure in Fig. 2 is trained using the top-down ap-
proach described in Section II-A1. Differences lie in that the

th reduced residuals are used as training set
for the ITAD layer , and that since all reduced residuals reside
in the same subspace, the next layer dictionary is trained using
all the residuals simultaneously, without partitioning them.

In addition, during the training, not only the atoms are
updated using the first left singular vector of the corresponding
training class matrix . The alignment matrices corre-
sponding to atoms are also updated using all remaining left
singular vectors, except the first. The coefficients are obtained
from (11b), and the residuals used as input for the following
layer from (10).

This approach ensures firstly that the chosen atom is the best
atom for single-atom approximations of the corresponding sub-
class and second that the corresponding aligned residuals of
each class share a common left singular vectors basis (and ac-
cordingly, a more similar structure) at the input of the subse-
quent layer .

An example of the ITAD candidate dictionaries produced by
the above described algorithm is shown in Fig. 3, represented in
signal-space for visualization purposes.

Fig. 3. Example of ITAD candidate dictionaries found along two branches
across the first four layers (represented in signal-space). The ancestor atom in-
dices� � �� � � � � � � � of each dictionary are noted on top of each figure.
The immediate parent atom of each dictionary is the highlighted atom found in
the candidate dictionary directly above.

III. PROPOSED IMAGE CODEC

We now present the proposed ITAD image codec that is the
main contribution of this paper. The encoder uses the ITAD
transform discussed in the background section to compress the
mean-removed component of image blocks taken over a regular
grid; we refer to the mean of a block and a block’s mean-re-
moved version as its DC and AC components, respectively. In
order to determine the sparsity of each individual block, we de-
rive a global sparsity criterion that accounts for the global image
rate and distortion.

A. Block Slicer and AC/DC Splitter

The block diagram in Fig. 4 illustrates the major components
of our proposed image encoder. The first step of the process
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Fig. 4. The ITAD-based image codec: The input image � is split into disjoint blocks �. The DC and AC components � and � of each block � are then encoded
separately. The operation of the bottom-right AC encoding block ITAD/R-D Transform Coding is described in Figs. 5 and 6.

Fig. 5. The ITAD Block Coder (BC): Sparse decomposition at the �th ITD-MP iteration and subsequent encoding of the atom-index/coefficient pair.

consists of slicing a given input image into non-overlapping
blocks using a regular grid. Vector (with )

denotes the vectorized version of one of these blocks, and thus
the input image is represented at the output of the block-slicer
by an ordered set of blocks :

(13)

As illustrated in Fig. 4, each block is subsequently split
into a DC and an AC component, and the resulting AC and DC
streams are encoded separately. We let denote the mean com-
ponent of each block, given by

(14)

will denote the AC (mean-removed) version obtained by sub-
tracting from each entry of .

B. DPCM Coding of DC Components

The DC components are encoded using an approach similar
to that of various block-based codecs including the JPEG image
coder [4]. The approach exploits the spatial correlation of the
DC coefficients by means of a differential pulse code modula-
tion (DPCM) applied to the DC stream . By convention, we
order the DC stream using row-wise rastering and reversal of
order from line to line to better exploit the spatial correlation of
the DC coefficients. The DPCM symbols are subsequently en-
coded using an entropy encoder. The resulting coded version of
the DC values is denoted .

Note that, following removal of the DC components, all AC
blocks are contained in the orthogonal complement of the
all-ones vector . The fact that AC and DC components are or-
thogonal means that the distortion at the output of the codec
is the sum of the distortions of the two components. For this
reason, we can disregard the DC component in the subsequent
discussion on AC encoding and instead focus on minimizing the
AC distortion.

C. ITAD-Based Transform Coding of AC Components

The remaining AC component blocks are compressed using
an encoder based on the ITAD transform in Fig. 2. The proposed
encoder distributes bits to the various AC blocks using a rate/

distortion criterion that we will derive shortly. Throughout the
discussion we assume that the ITAD structure has been trained
using a large number of examples taken from a set of training
images according to the algorithm described in Section II-E.

1) ITAD Sparse Decomposition of AC Blocks: In the left-
hand side of Fig. 5 we illustrate the ITAD atom index/coefficient
selection process. For ease of analysis, we have used the signal-
space representation of the residual vectors and of the ITAD
candidate dictionaries . The sparse decomposition of the
signal blocks proceeds iteratively, with each iteration of the
loop selecting one atom and a corresponding coefficient

from the th ITAD layer and accordingly producing the th
residual vector .

2) Quantization of the Coefficients: The coefficients
selected using the ITAD structure need to be quantized in
order to produce a compact representation of each . We use

to denote the quantized version of and, accordingly,
we let denote the quantized version of the
coefficients vector .

The coefficient encoding strategy consists of one uniform
scalar quantizer common to all layers of the ITAD structure:

(15)

The quantized symbols are then encoded using a Huffman
entropy encoder unique to each layer . The Huffman code table
is constructed offline on the training set of images.

Previous work [15] on quantization of coefficients from over-
complete transforms has considered adding the quantization
step in the atom selection process illustrated in the left-hand
side loop of Fig. 5 by substituting when building the residual

at the input of the following iteration. For the case of general
overcomplete transforms, this approach produces better sparse
representations under quantization because the latter iterations
of the decomposition process consider the non-orthogonality
between residual and selected atom(s) resulting form the finite
precision of the quantized projection coefficients . However,
as in the case of general orthogonal transforms, the orthogo-
nality of the ITAD selected-atoms matrices implies that ITAD
sparse decompositions do not require this extra consideration
at the encoder.

3) Atom Encoding: The decoder needs to know which atoms
have been chosen at the encoder, and thus the encoder needs
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Fig. 6. Rate-distortion transform coding using ITAD. Each of the image blocks � is assumed to have a corresponding block coder (BC) (illustrated in Fig. 5).

to transmit the index of each atom selected. The order of these
atom indices is important, as we let the position of each index
in the ordered set (where the sparsity
denotes the number of atoms used in the approximation of the
input vector ) specify the layer to which it refers.

We use a fixed length code to encode each atom index ,
since we have observed that there is only a small gain resulting
from using an entropy code for the atom indices. Assuming that
the th ITAD dictionary contains atoms, each atom index thus
incurs a rate penalty of

(16)

D. Block Sparsity Selection Using a Global Rate-Distortion
Criterion

Any image compression system aims to maximize recon-
struction fidelity under a rate constraint. In order to arrive at
a formal expression for this goal in the context of ITAD, we
denote the th approximation (6) under coefficient quantization
as

(17)

At the output of the encoder, each image block is then repre-
sented by the approximation , where the spar-
sity value generally differs for each block . Each approxi-
mation is in turn completely specified by an ordered set of
atom-index/quantized-coefficient pairs

(18)

that incurs a rate penalty of .
1) Problem Formulation: Using this notation, we can express

the initially stated rate-constrained representation fidelity goal
as the following constrained optimization problem:

(19)

where denotes the maximum rate allocated to the image.
2) Solution Strategy: The above stated problem is difficult

to solve exactly and would likely require an untractable combi-
natorial approach. We thus consider the following strategy (il-
lustrated in Fig. 6) to approximate the solution: we build the

reconstructed image by first initializing the approximations of
all blocks to zero:

(20)

accordingly initializing one block coder (illustrated in Fig. 5)
per image block. We then select one image block at a time and
improve its approximation (note from Fig. 5 that is ini-
tialized to unity) by adding a single pair to its represen-
tation , repeating the block selection and improvement process
as long as the rate constraint in (19) has not been reached.

At any one time, the block chosen for improvement of its
approximation will be the one that best fits the aim of the con-
strained problem in (19). Noting that the new pair will
incur a rate penalty of bits, a good, low-complexity
estimate of the block that best corresponds to (19) is that pro-
ducing the largest reduction in the error per bit

(21)

To simplify this above expression, we recall that at the th
decomposition iteration (where is the signal dimension) the
approximation of is exact: . The th residual
vector under the influence of quantization can be
expressed using (3) as

(22)

(23)

where and
contain the atoms and coefficients corresponding to layers

.
From the orthogonality of the matrix we know that the

right-hand side term of this last expression contains the compo-
nent of existing in the orthogonal complement space of the
selected atoms matrix corresponding to the th residual .
We further define the quantization error vector
and, using , thus rewrite (23) as

(24)
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The numerator of (21) can then be expanded as follows:

(25)

Letting denote the th element of , the above expression can
be further expanded as

(26)

(27)

Plugging this last result into (21), the distortion gain per bit re-
sulting from adding a new pair to a given approximation

of a block is given by

(28)

As illustrated in Fig. 6, we use this last expression as a control
criterion to choose which block approximation will get a
new pair.

On the left-hand column of Fig. 7 we illustrate the perfor-
mance of the proposed rate-distortion based global sparsity
criterion above described by plotting, from top to bottom, 1)
a reconstructed image and 2) its atom-distribution map and 3)
RMSE per-block map. On the right-hand column of the same
figure, we show the same three graphics obtained when using
a common sparsity-selection approach based on an RMSE
threshold:

(29)

Note that the proposed sparsity criterion distributes atoms more
uniformly than the scheme based on (29), while the resulting
RMSE per block of the proposed scheme is less uniform. For
the same coding rate (0.5 bpp), the proposed scheme offers an
advantage of 0.63 dB.

E. Bit-Stream Format

In Fig. 8, we propose a simple bit-stream format for the ITAD
codec discussed above. The structuring of the bit-stream is car-
ried out using a one-bit end-of-block (EOB) flag which is in-
serted after each coefficient/index pair. If the flag is 0, then it is
not the last pair of the block, if it is 1, it is the last pair of the
block. Thus, the rate corresponding to the transmission of this
flag has to be taken into account when calculating the rate of an

pair to compute the block selection criterion in (28):

(30)

where is given in (16) and is the length in bits
of the codeword representing . The corresponding rate for
the AC component of an image block is given by

.

Fig. 7. Example of (top) the reconstructed image (middle) the encoder distribu-
tion of atoms-per-block and (bottom) the RMSE of the AC component of each
block when using sparsity-selection criteria based on (left) a global rate-dis-
tortion scheme as illustrated in Fig. 6 or (right) a constant RMSE threshold �

as in (29). Both setups correspond to 0.5 bpp; the resulting PSNR and mean
block-sparsity are: (left) 36.40 dB and 2.07 atoms-per-block; (right) 35.77 dB
and 1.92 atoms-per-block. The original image used is shown in the second row
of Fig. 14.

Fig. 8. Bit-stream used to represent the set � of �� � �� � pairs defining the
approximation �� of an image block and the DPCM coded DC component ��.

IV. RESULTS

In the current section, we evaluate the proposed image codec
in compression of the class of facial images, comparing it
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against the state-of-the art in image compression. Our evalua-
tions show that our codec can offer an advantage that can be as
high as several dBs for certain coding rates.

A. Experimental Setup

We use an image dataset consisting of frontal pose images
of 764 different subjects: 664 of these images are used to train
the image codec while the remaining (mutually exclusive) 100
images are used as a test set. The images are high-resolution un-
compressed images taken from the FERET image dataset [16],
manually cropped to focus on the face and re-sized to a uniform
size of 192 144 pixels. When plotting avergae rate-distortion
performance for all 100 test images, we carry out the following
interpolation strategy: For each image, we first compute the dis-
tortion at some nominal rates. Since it is not always possible
to achieve a given rate exactly, we interpolate the rate-distor-
tion curves to obtain the distortion at the exact nominal rates.
The rate-distortion curves plotted throughout correspond to the
nominal rates versus the interpolated distortion averaged over
all 100 test images.

As a comparison reference we use the state-of-the-art
JPEG2000 [17] image encoder and its widely used predecessor,
the JPEG encoder.

B. Choice of ITAD Dictionary

In order to justify the choice of the ITAD dictionary, we com-
pare it to the (over)complete DCT and several other recently
proposed overcomplete dictionaries. The reference dictionaries
are the (over)complete DCT basis and three recent trained
overcomplete dictionaries: the -SVD dictionary of [14], the
sparse dictionary (SD) of [18] and the online learned dictio-
nary (ONLD) of [19]. Decompositions using these reference
dictionaries are carried out using OMP. The reference trained
dictionaries are trained using the software made available by
the authors [20]–[22] with a training RMSE theshold [cf.
(29)] chosen to yield the best curve when varied over a range
centered on and unit steps [9]. For the case of SD, we sim-
ilarly selected the best sparsity of the dictionary columns
[18]. We summarize the selected parameters for the reference
dictionaries in Table I.

From Fig. 9 we compare the various dictionaries by plot-
ting the PSNR of the reconstruction as a function of the mean
number of atoms required. We note that ITAD dictionaries
with candidates having only 64 atoms per candidate can out-
perform all reference fixed dictionaries having 256 atoms. The
reduced number of atoms of the ITAD candidates implies that
the improved PSNR is attained with reduced complexity [9].
The improved compressibility that can be achieved with ITAD
while incurring lower complexity justifies its use in the proposed
codec.

C. ITAD Codec Construction

To construct the ITAD codec presented in previous sections,
we begin by first extracting non-overlapping image blocks
from all 664 training images using a regular grid. To test the
influence of the block size on the results, we build codecs using
three different block sizes: 8 8, 12 12, and 16 16. This

Fig. 9. Compressibilities achievable with ITAD and the reference�-SVD, SD,
ONLD, and (over)complete DCT dictionaries. The original, uncropped FERET
images withouth re-sizing are used in this experiment. The chosen training/
testing FERET images are the same images used in the rest of the experiments
(664 training images, 100 testing images). The results plotted are averaged over
all 100 test images. For all reference dictionaries,� represents the total number
of atoms, whereas for ITAD it represents the number of atoms per layer (i.e., per
prototype dictionary).

TABLE I
PARAMETERS USED FOR REFERENCE TRAINED DICTIONARIES IN FIG. 9

produces, respectively, training sets containing
and vectors.

For each of these training sets, we first extract all the means
and quantize them using a uniform quantizer with unit quanti-

zation step and dynamic range between 0 and 255. The resulting
streams (one per training image) are DPCM encoded, and
the residual of the DPCM prediction (for all training images) is
used to design the corresponding entropy coder.

For simplicity, the AC coefficients are quantized using a
single uniform quantizer that is common across all layers. The
AC quantization step is defined in terms of the per-pixel
RMSE, which, due to the orthonormality property of the se-
lected atoms, can be equivalently computed as

where denotes the representation coefficients. When the quan-
tization error is uniformly distributed (i.e., ), this
per-pixel RMSE is computed as

(31)

where the block is assumed to be . While we use an AC
quantizer that is common to all layers, the subsequent entropy
encoder is layer dependent. We use the same set of per-layer
encoders for all test images; each encoder is designed using



ZEPEDA et al.: IMAGE COMPRESSION USING SPARSE REPRESENTATIONS 1069

Fig. 10. Experimental rate-distortion curves for the ITAD-codec for various
quantization steps when using � � ��� atoms (constant for all layers) per
ITAD prototype dictionary. The values displayed are averaged (using interpola-
tion) over the test images. We only plot data points where the rate is achievable
by at least 90 of the 100 test images.

Fig. 11. Histogram of quantized coefficient values for all 432 blocks of one
test image using the � � ���� quantizer. Each image block is decomposed
using the first 32 ITAD layers and all 32 resulting coefficients are quantized.
A layer’s histogram is then computed on all the 432 coefficients thus produced
by that layer. Histogram values (denoted by the data markers) are connected
by straight lines for illustrative purposes. Vertical grid lines denote quantization
boundaries.

the empirical probabilities of the quantization symbols of the
training set at the corresponding layer .

We use Huffman codes [23] for entropy encoding of both AC
and DC (DPCM residual) symbols.

D. Quantitative Experiments

We carry out three different quantitative experiments: In the
first two experiments we evaluate, respectively, the influence of
1) the quantization step and of 2) the number of prototype dic-
tionary atoms (kept constant for all ITAD layers). In the third
experiment, we compare our image codec to the state-of-the-art
JPEG2000 image encoder and its predecessor the JPEG image
encoder on a specific class of imaged (set of facial images). For
all three experiments we plot the average PSNR as a function
of the true bit-rate, where the average is taken over all 100 test

Fig. 12. Experimental rate-distortion curves for the ITAD-codec as a function
of the ITAD prototype dictionary size � (constant for all layers) when using
� � ����. The values displayed are averaged (using interpolation) over the
100 test images.

Fig. 13. Experimental rate-distortion curves for the ITAD-codec using various
block sizes versus JPEG2000 and JPEG. The values displayed are averaged over
all 100 test images [9].

images. From Fig. 8 and (30) the total bit-rate for a given image
is given by

(32)

The rate plotted is the corresponding value expressed in bits-
per-pixel (bpp).

In Fig. 10, we carry out the first experiment evaluating the
quantization step-size (expressed in terms of the per-pixel
RMSE ). We use an ITAD structure having
atoms per layer and blocks of size 8 . As illustrated in the
figure, the optimal quantization step depends on the coding
rate, yet, for simplicity, we use a constant quantization step
for all rates (for a given block size). Note that some curves
(e.g., for ) appear truncated in the figure. The
reason for this is that it is not possible to achieve all rates for
a given step size since, for sufficiently large , all coefficients

are quantized to zero. We illustrate this in Fig. 11, where
we plot histograms of quantized coefficients (for )
for selected layers. Note that, by the tenth layer, only a small
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Fig. 14. Qualitative evaluation of the ITAD codec at a nominal rate of 0.3 bpp. From left to right, the first column contains the original images and the
remaining three columns contain, respectively, the decoder-output image for JPEG, JPEG2000 and the ITAD codec. The exact rate and distortion for the
rows of the last three columns are given in the respective cells of Table II.

fraction of coefficients are quantized to bins other than the
zero bin. From layers 20 through 32, all coefficients are
quantized to the zero bin. This problem could be addressed
by decreasing the quantizer step size along with increasing
layer index, but we did not pursue this approach in the present
work.

In Fig. 12, we carry out the second experiment (again using
blocks of size 8 8) which evaluates the performance of the
ITAD codec as a function of the total number of atoms in
each layers (using ). Note that larger dictionaries
result in improved performance even though the atom index
coding penalty increases with . The increased spar-
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Fig. 15. Qualitative evaluation of the ITAD codec at a nominal rate of 0.4 bpp. From left to right, the first column contains the original images and the remaining
three columns contain, respectively, the decoder-output image for JPEG, JPEG2000 and the ITAD codec. The exact rate and distortion for the rows of the last three
columns are given in the respective cells of Table III.

sity of the representation indeed succeeds in overcoming the
related atom-index penalty.

In Fig. 13, we compare our proposed ITAD codec against
the JPEG and JPEG2000 image encoders. The three different
curves shown for the ITAD codec correspond to three different
block sizes (8 8, 12 12, and 16 16); we used the same
experiment as in Fig. 10 to choose the corresponding value

(respectively, 0.91, 0.8, and 0.72). We fixed the number of atoms
to 128 in all cases as this value is sufficiently low to facilitate

training and keep codec complexity low. From Fig. 12, it is also
evident that increasing results in marginal gain.

The results in Fig. 13 show that different ITAD codecs are
capable of outperforming the two reference codecs at all plotted
rates by a wide margin. The 8 8 ITAD codec, for example,
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TABLE II
RATE (bpp) AND DISTORTION (dB) FOR THE IMAGES IN FIG. 14

TABLE III
RATE (bpp) AND DISTORTION (dB) FOR THE IMAGES IN FIG. 15

outperforms JPEG2000 for all rates above 0.23 bpp by at least
0.5 dB. At 0.4 bpp, the ITAD Codec gain is 0.9 dB. The ITAD
codecs based on the two larger block sizes offer gains of several
dB for lower bitrates. For example, at 0.28 bpp, the 12 12
codec offers a gain of 1.5 dB.

E. Qualitative Experiments

We now carry out a qualitative comparison of the ITAD codec
and the JPEG2000 and JPEG codecs on four images chosen
from our test set. The results are illustrated in Figs. 14 and 15.
As indicated in the figures, each of the four columns of either
figure corresponds, respectively, to 1) the original image, 2) the
JPEG decoded image 3) the JPEG2000 decoded image, and 4)
the ITAD decoded image. The difference between the two fig-
ures is in the nominal rate used for all encoders: In Fig. 14, we
use a nominal rate of 0.3 bpp and in Fig. 15 we use a nominal
rate of 0.4 bpp. Using Fig. 13, we choose an ITAD block size
of 12 12 for the 0.3 bpp rate and of 8 8 for the 0.4 bpp.
Note that blocking artificacts will be more visible for the 0.4
bpp images because of the greater number of block boundaries
resulting from the smaller block size.

From the illustrations, one can observe that the images at the
output of the ITAD codec indeed display an improved visual
quality relative to either of the reference codecs. The JPEG en-
coder suffers from a very pronounced blocking artifact, particu-
larly in the low-rate figure. The JPEG2000 images, on the other
hand, suffer from blurring of the facial features. This is espe-
cially noticeable (in all images) around the eyes and nose, which
are a lot sharper in the ITAD decoded images. For complete-
ness, we provide the exact rates and PSNRs for both qualitative
comparisons in Tables II and III, with each row of the table cor-
responding, respectively, to a row of Figs. 14 and 15.

V. CONCLUSION

In this paper, we have shown how the superior sparse approx-
imation capability of the ITAD dictionary can be leveraged to
construct an image codec capable of outperforming state-of-the
art algorithms such as JPEG2000, when used on specific classes

of images, such as facial images. The codec selects the sparsity
of the various blocks using a rate-distortion criterion. Coding of
the ITAD coefficients is then carried out using a standard quan-
tizer/entropy encoder combination. The evaluations we carried
out show that our proposed codec can outperform the state of
the art by at least 0.5 dB over a large range of rates. We further
showed that the reconstructed image is more clear and better
preserves details.
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