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ABSTRACT

We present a new, block-based image codec based on sparse repre-
sentations using a learned, structured dictionary called the Iteration-
Tuned and Aligned Dictionary (ITAD). The question of selecting
the number of atoms used in the representation of each image block
is addressed with a new, global (image-wide), rate-distortion-based
sparsity selection criterion. We show experimentally that our codec
outperforms JPEG2000 in both quantitative evaluations (by 0.9 dB
to 4 dB) and qualitative evaluations.

Index Terms— Image compression, sparse representations,
learned dictionaries, structured dictionaries, matching pursuit

1. INTRODUCTION

A sparse representation of a signal consists of a linear combination
of vectors known as atoms taken from a pre-defined, generally over-
complete transform known as the dictionary. The representation
is called sparse because it employs only a small number of atoms
from the dictionary. Signals that can be well represented sparsely
are termed compressible under the given dictionary. Compressibility
can be very useful in a variety of applications including denoising,
prediction, and texture separation.

The application considered in this paper is image compression,
where sparse representations consisting of only a few non-zero co-
efficients are ideal to produce compact representations of image
blocks. Recent research effort has been dedicated to learning dictio-
naries, thus adapting them to a specific signal class, for the purpose
of image compression. By using a learned dictionary, the image
encoder can benefit from the ensuing greater compressibility of the
considered signal class. An example of this approach is embodied
in the facial image codec based on the K-SVD dictionary intro-
duced by Bryt and Elad [1]. Their approach nonetheless employs
a piecewise-affine warping of the face that ensures that the various
facial features coincide with those of a pre-specified face template.
Each block of the face template (corresponding roughly to a fa-
cial feature such as the nose) defines a class of signals that is then
represented with a corresponding K-SVD dictionary. This warp-
ing procedure limits the applicability of that codec to other signal
classes, besides increasing the codec complexity and sensitivity to
variations (eg., in lighting conditions, pose and particularities of the
subject).

Another example of an image compression system based on
trained overcomplete dictionaries is that developed by Sezer et al.
[2]. Their dictionary structure consists of a concatenation of orthog-
onal bases. A single one of these bases is selected to encode any
given image block of fixed size. This approach has the advantage
that it reduces the atom-index coding overhead, yet this comes at the
cost of reduced effective dictionary size.

In this paper we introduce a new image codec based on the
Iteration-Tuned and Aligned Dictionary (ITAD) [3]. The ITAD

structure is a recently introduced learned structured dictionary that
has been shown [3] to outperform (in PSNR vs. sparsity and rate-
distortion evaluations) other learned overcomplete dictionaries in-
cluding the K-SVD dictionary used in [1], a sparse dictionary
introduced in [4]. ITAD is a variation of the Iteration-Tuned Dic-
tionary (ITD) [5] consisting of a dictionary that is structured to be
better adapted to the iterative nature of matching pursuit.

The proposed codec uses the ITAD transform to encode mean-
removed image blocks (taken over a regular grid), while the block-
mean is encoded using a common DPCM-based arrangement. The
ITAD transform coefficients are encoded using a simple uniform
quantizer / entropy encoder combination, while the atom indices
are encoded using a fixed-length code. We further introduce a new
global (image-wide) method for jointly selecting the sparsity of all
image blocks based on a rate-distortion criterion. The proposed
ITAD codec is shown to outperform the JPEG and JPEG2000 en-
coders in quantitative and qualitative evaluations.

The remained of this paper is organized as follows: In Section 2,
we provide background on the ITAD structure that is at the core of
our codec. In Section 3, we introduce the codec the new global rate-
distortion criterion for sparsity selection. In the results section (Sec-
tion 4), we evaluate our new sparsity selection method and show that
it ouperforms JPEG2000 and JPEG both quantitatively and qualita-
tively. We provide some concluding remarks in Section 5.

2. BACKGROUND: THE ITERATION-TUNED AND
ALIGNED DICTIONARY

The Iteration-Tuned and Aligned Dictionary (ITAD) is a learned,
structured, overcomplete dictionary that is at the heart of our pro-
posed codec. We thus now provide background material on ITAD.

The ITAD structure is illustrated in Fig. 1: It consists of lay-
ers i = 1, . . . , d (where d is the dimension of the input signal y )
containing each a prototype dictionary

Di′ ∈ R
(d−i+1)×N .

Each atom di′
a ∈ Di′, a = 1, . . . , N has a related tall rotation (or-

thonormal) matrix φi
a ∈ R

(d−i+1)×(d−i) that resolves the difference
in dimensionality between the Di′ of different layers i. For example,
letting di′ denote the prototype atom selected in the i-th layer and
φi its rotation matrix, the residue ri′ (by convention, r0′ = y) at the
output of the i-th layer is obtained as follows:

ri′ = (φi) t
“
r(i−1)′ − γi · di′

”
∈ R

d−i, (1)

where γi = (di′) t · r(i−1)′. This equation states that, when travers-
ing ITAD layers downwards, one must reduce signal dimensionality
using the rotation matrix (φi) t . This reduction will not cause data
loss since the rotation will be such that the dropped dimension falls
along the selected atom di′ and the signal component along this di-
rection is previously removed when subtracting γi · di′.
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Fig. 1. The ITAD structure for the first two layers, using generic
labels for the second layer (i = 2).

1: repeat
2: Clear all Ra, a = 1, . . . , N.
3: for n = 1 to T do
4: a = argmax

b∈{1,...,N}
|(di′

b ) t · r(i−1)′
n |

5: Ra ←
h
Ra | r

(i−1)′
n

i
6: end for
7: for a = 1 to N do
8:

ˆ
di

a | φi
a

˜← LSV(Ra)
9: end for

10: until convergence of Di′

Fig. 2. The ITAD training algorithm for the i-th layer. LSV(·) in
line 8 returns the left singular vectors arranged in decreasing order
of singular value.

Atom selection using ITAD-based Matching Pursuit (MP) de-
compositions will proceed as in the standard MP formulation by us-
ing, in the i-th MP iteration, the prototype Di′ and residue r(i−1)′

as follows:

di′ = argmax
d∈Di′

˛̨̨
d t · r(i−1)′

˛̨̨
. (2)

To obtain a reconstruction of y from the resulting L selected atoms
and coefficients di′ and γi, i = 1, . . . , L, one must again account
for the difference in dimensionality across ITAD layers. This is done
by means of the accumulator vector

ř(i−1)′ = γi · di′ + φiři′ ∈ R
d−i+1, (3)

where the reconstructed signal is given by ř0′ (by convention, řL′ =
0). This equation states that, when traversing ITAD layers upwards,
one must remap the signals to successively higher dimensionality
using the φi matrices of the selected di′. Indeed this procedure can
be used to remap a given prototype atom di′ to the signal space R

d

of layer 1 (i.e., using (3) with γi = 1 and γj = 0 for j �= i), where
we denote it as di. We can thus define the selected-atoms matrix
(useful for mathematical analysis)

Si =
ˆ
d1 | . . . | di

˜
. (4)

The ITAD Si are orthogonal, and this is a consequence of the
construction of the φi specified, along with that of the Di′, in Fig. 2.
Note that each ITAD layer is trained using the (i − 1)-th residual set

{r(i−1)′
n }T

n=1 of a training set {yn}T
n=1 using an extension of the

approach in [5] .

3. THE PROPOSED IMAGE CODEC

We now present the proposed ITAD image codec that is the main
contribution of this paper. The general encoder setup is as follows:
The image is first sliced into non-overlapping

√
d × √

d blocks de-
noted as vectors z ∈ R

d. The mean of each block, denoted μ, is
then encoded using a standard DPCM / entropy encoder setup. The
mean-removed component

y = z − μ · 1 (5)

(where 1 is the all-ones vector) of each block is then decomposed
into a sequence of atom-index / coefficient pairs {(ai, γi)}L

i=1 us-
ing the ITAD scheme described previously. Next we discuss the
coefficient and atom encoding process, and afterwards address the
selection of the block-dependent sparsity L.

3.1. Coefficient and atom-index encoding

The coefficients γi produced by the ITAD transform are quantized
using a uniform quantizer common to all layers i. The quantized
symbols γ̃i are then encoded using an entropy encoder unique to
each layer i. We let R(γ̃i) denote the bit length of the quantized
symbol.

Atom indices are encoded using a fixed-length code and hence
each atom index ai requires

R(ai) = log2(N) (6)

bits, where N is the number of atoms in each Di′.
At the output of the encoder, each image block y will be repre-

sented by an ordered set of atom-index / quantized coefficient pairs
which we denote as

YL = {(ai, γ̃i)}L
1 . (7)

3.2. Global rate-distortion criterion for block sparsity selection

The encoder needs to select the number of atom-index/coefficient
pairs L used to represent each block (i.e., the block sparsity), and we
now address this issue. In order to differentiate amongst all image
blocks y, we let b = 1, . . . , B denote the block index (as in yb),
where B is the total number of image blocks. The sparsity selection
problem is hence expressed as

argmin
L1,...,LB

BX
b=1

|yb − ỹ
Lb
b |2 s.t.

BX
b=1

R(YLb
b ) ≤ Ψ, (8)

where ỹi denotes the signal vector reconstructed using i quantized
coefficients γ̃i, Ψ is the allocated image rate and the R(·) operator
denotes coding rate.

The above stated problem is difficult to solve exactly and would
likely require an intractable combinatorial approach. Hence we use
the following strategy to approximate the solution: We build the
reconstructed image by first initializing the approximations of all
blocks to zero:

ỹ0
b = 0, Yb = ∅, Lb = 0, ∀b. (9)

We then select one image block β at a time and improve its ap-

proximation ỹ
Lβ

β by adding a single atom / coefficient pair to its
representation Yβ , repeating the block selection and improvement
process as long as the rate constraint in (8) has not been crossed.
The block β chosen for improvement will be the one offering the
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largest reduction in approximation error versus rate increase. Let-
ting, (ab,i, γ̃b,i) denote the i-th atom-index / quantized coefficient
pair of block number b, we can express this as

β = argmax
b

|yb − ỹ
Lb
b |2 − |yb − ỹ

Lb+1
b |2

R((ab,Lb+1, γ̃b,Lb+1))
, (10)

where the denominator contains the rate of the atom-index / quan-
tized coefficient pair.

We now simplify the numerator of (10) with the help of the (or-
thogonal) selected-atoms matrix Si (cf. (4)) and the coefficients vec-

tor Γi =
ˆ
γ1 . . . γi

˜ t
. At layer i = d (d the input signal di-

mension), Sd is square and hence block y (we drop the block index
b for notational convenience) is given exactly by:

y = SdΓd =
h
SL | S̄L+1

i h
(ΓL) t | (Γ̄

L+1
) t
i t

(11)

where S̄
L+1

contains the atoms from layers (L+1), . . . , d and Γ̄
L+1

the corresponding coefficients. Using (11) and ỹL = SLΓ̃
L

, we
write

|y − ỹL|2 =
˛̨̨ˆ

SL | S̄L+1
˜ˆ

(ΓL) t | (Γ̄
L+1

) t
˜ t − SLΓ̃

L
˛̨̨2

=
˛̨̨ˆ

SL | S̄L+1
˜ˆ

(ΓL − Γ̃
L
) t | (Γ̄

L+1
) t
˜ t
˛̨̨2

(12)

=
˛̨̨
ΓL − Γ̃

L
˛̨̨2

+
˛̨̨
(Γ̄

L+1
) t
˛̨̨2

, (13)

where we used the orthogonality of Sd =
ˆ
SL | S̄L+1

˜
to go from

(12) to (13). When subtracting two expressions of the form (13) for
sparsities Lb and Lb + 1, as done in the numerator of (10), only a
single squared coefficient will remain from each of the two squared
norm terms in (13):

|yb − ỹ
Lb
b |2 − |yb − ỹ

Lb+1
b |2 = (γ̃b,Lb+1 − γb,Lb+1)

2 + γ2
b,Lb+1.

(14)
This last result can be used directly in place of the numerator in (10).

3.3. Bit-stream format

The structuring of the bit-stream is carried out using one-bit end-of-
block (EOB) flags:

μ̃|EOB a1|γ̃1|EOB . . . aL|γ̃L|EOB .

Thus we include this flag when calculating the rate of an (ai, γ̃i) pair
to compute the block selection criterion in (10),

R((ai, γ̃i)) = R(ai) + R(γ̃i) + R(EOB), (15)

where R(ai) is given in (6), R(γ̃i) is the length in bits of the code-
word representing γ̃i and R(EOB) = 1. The resulting image coding
rate follows, where R(μ̃b) is the rate of the DPCM coded block
mean:

BX
b=1

 
R(μ̃b) +

LbX
i=1

R((ab,i, γ̃b,i))

!
. (16)

4. RESULTS

In the current section we evaluate the proposed image codec in com-
pression of the class of facial images. Our comparisons against
JPEG2000 and JPEG show that our codec offers a significant PSNR
advantage and superior visual quality of reconstructed images.

0

5
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15

Fig. 3. Number of atoms per block when using (left) the proposed
scheme in (10) and (right) the standard scheme in (17). When coding
at 0.5 bpp, (10) produced greater block sparsity (2.07 versus 1.92
atoms on average) and improved PSNR (36.40 dB versus 35.77 dB).

We use an image dataset consisting of frontal pose images of 764
different subjects: 664 of these images are used to train the image
codec while the remaining (mutually exclusive) 100 images are used
as a test set. The images are high-resolution uncompressed images
taken from the publicly-available FERET image dataset, manually
cropped to focus on the face and re-sized to a uniform size of 192×
144 pixels.

As a comparison reference we use the state of the art JPEG2000
image encoder and its widely used predecessor, the JPEG encoder.

4.1. ITAD codec construction

To construct the ITAD codec, we extract non-overlapping image
blocks z from all 664 training images using a regular grid. We build
three different codecs using three different block sizes: 8×8, 12×12
and 16 × 16. These block sizes result, respectively, in training sets
containing 2.9× 105, 1.27× 105 and 0.71× 105 vectors. The mean
removed version of these training patches is used to train correspond-
ing ITAD dictionary structures.

The block mean μ is quantized using unit steps 0, 1, . . . , 255
and encoded using a DPCM / Huffman coder arrangement. The co-
efficients γi of the mean removed blocks y are quantized using a
single uniform quantizer that is common across all ITAD layers i.
The quantization step Δ = εΔ · √d · √12 (where the block is size√

d × √
d) is defined in terms of the per-pixel RMSE εΔ resulting

when the quantization error is uniformly distributed. We use a layer-
dependent Huffman code to encode the quantized coefficients γ̃i.

4.2. Evaluation of global sparsity selection criterion

On the left-hand column of Fig. 3 we illustrate the performance of
the proposed rate-distortion based global sparsity criterion based on
(10). The figure compares the atom distribution map obtained using
(10) to that obtained using a common (non-global) sparsity-selection
approach consisting of ensuring a maximum approximation RMSE
ε:

argmin
L

L s.t. |y − ŷL|2 ≤ d · ε2. (17)

Note that the proposed sparsity criterion distributes atoms more uni-
formly than the scheme based on (17). The proposed approach pays
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Fig. 4. Rate-distortion evaluation of the ITAD-codec with various
block sizes. The curves are averaged over all 100 test images.

off: For the same coding rate (0.5 bpp), our scheme offers an advan-
tage of 0.63 dB.

4.3. Comparison against state of the art

In Fig. 4 we compare our proposed ITAD codec against the JPEG
and JPEG2000 image encoders. The three different curves shown
for the ITAD codec correspond to three different block sizes (8 ×
8, 12× 12 and 16× 16); the corresponding quantizer RMSE values
εΔ where chosen experimentally (respectively, 0.91, 0.8 and 0.72).
We fixed the number of atoms N to 128 in all cases as this value is
sufficiently low to facilitate training and keep codec complexity low.
The codec performance was not overly sensitive to these parameters:
Varying εΔ by as much as 30% would have an effect of less than
0.3 dB. The optimal N was in fact higher than 512 atoms, yet the
gain was marginal (less than 0.2 dB) and required increased encoder
complexity and memory footprint.

The results in Fig. 4 show that different ITAD codecs are capable
of outperforming the two reference codecs at all plotted rates by a
wide margin. The 8 × 8 ITAD codec, for example, outperforms
JPEG2000 for all rates above 0.23 bpp by at least 0.5 dB. At 0.4
bpp, the ITAD Codec gain is 0.9 dB. The ITAD codecs based on the
two larger block sizes offer gains of several dB for lower bit-rates.
For example, at 0.28 bpp, the 12× 12 codec offers a gain of 1.5 dB.
At 0.15 bpp, the gain is close to 4 dB.

In Fig. 5 we also carry out a qualitative comparison of our codec
to both JPEG2000 and JPEG; we present only one sample image due
to space limitations, although the advantage was generally noticeable
for all images. The nominal coding rate used is 0.3 bpp (the exact
rate and PSNR is indicated in the caption). From the illustrations,
one can observe that the images at the output of the ITAD codec in-
deed display an improved visual quality relative to either of the ref-
erence codecs. The JPEG encoder suffers from a very pronounced
blocking artifact, while the JPEG2000-encoded images suffer from
blurring of the facial features. This is especially noticeable around
the eyes and nose, which are a lot sharper in the ITAD-encoded im-
ages.

Fig. 5. Qualitative evaluation of ITAD codec. Clockwise from top-
left: original, JPEG2000 (0.31 bpp, 31.46 dB), ITAD codec (0.31
bpp, 33.90 dB) and JPEG (0.33 bpp, 29.15 dB).

5. CONCLUSION

In this paper we have shown how the superior sparse approxima-
tion capability of the ITAD dictionary can be leveraged to construct
an image codec capable of outperforming state-of-the art algorithms
such as JPEG2000. The codec selects the sparsity of the various
blocks using a new global, rate-distortion criterion. We showed ex-
perimentally that our proposed codec produces superior visual qual-
ity and improvements of between 0.5 dB and 4 dB.
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