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Abstract—We introduce a new form of similarity measure to be used for
fast image comparison in large databases. The proposed approach makes
use of sparse vectors obtained through a learned analysis operator to
compute a computationally efficient and flexible image similarity metric.

I. INTRODUCTION AND PROPOSED METHOD

A general image search algorithm can be seen as having two
main goals: i) that of finding correctly matching images given a
task-specific search criteria and ii) that of doing so in a time and
resource efficient manner, particularly in the context of large image
databases. In addressing the first goal, discriminative Mahalanobis
metric learning methods have become an important part of the
research toolbox. Such methods can be seen as applying an explicit
linear transform to the image feature vector with the goal of making
distance computations between transformed feature vectors better
correspond to the search criteria. The linear transform can be learned
using one of a variety of objectives in order to adapt it to various
possible search criteria including image classification [4], [7], face
verification [2], [5], or image ranking [1]. Common to all these
methods is the fact that the learned linear transform is a complete
or undercomplete matrix that is constant for all image feature
vectors. Alternatively, similarity metrics in the form of correlation
of two projected vectors have also been used for image and audio
comparison and ranking [1], [3]. As opposed to approaches based
on distance metrics, the correlation based approach also has the
advantage of computationally benefitting from sparse representations.

In this abstract, given two feature vectors yi,yj ∈ RN representing
two images i, j, we present a similarity metric of the form

S(yi,yj) = z>i Bzj (1)

in which the sparse representations zi, zj are obtained using the soft
thresholding function acting on each entry of a vector with the set
of thresholds λ as

zi = softλ(Ayi) , zj = softλ(Ayj). (2)

The matrices A, B and the parameter vector λ are all learned from
a training dataset of pairs (zip , zjp ), p = 1, . . . ,m selected from a
training set of size T with each pair labeled as similar or dissimilar
(γp = 1 or − 1) by minimizing an objective function of the form

Ā, B̄, λ̄ = argminA,B,λ

∑m
p=1 `(γpz

>
ipBzjp) + ψ(A) + φ(B)

s.t. zt = softλ(Ayt), t = 1, . . . , T (3)

where the penalty function `(.) can be selected as the continuous
hinge function as shown in Figure 1. The functions ψ(.) and φ(.)
are regularization functions for the matrices A and B. Even though
the objective function in (3) is non-linear and non-convex, it can
still be minimized using off the shelf optimization methods such as
stochastic gradient descent.

`(x) = log(exp(−αx) + 1)/α

Fig. 1. Continuous hinge loss

Even though the use of correlation based similarity function with
sparse vectors as in (1) is proposed in earlier works [1], [3], making
use of analysis operators to obtain the sparse codes as in (2) to
be used in this similarity function is a new idea with multiple
advantages. Firstly, as compared to computing a sparse representation
in a dictionary, the operation in (2) is computationally much more
simple and faster. Secondly, the use of an analysis operator also
enables an asymmetric system with a similarity function in the form
of

S(yi,yj) = y>
i (A>Bzj) (4)

such that the comparison is even faster for a new item.

II. PRELIMINARY RESULTS

Initial experiments have been performed using the proposed sim-
ilarity metric in (1) and learning the parameters A and λ as in
(3) assuming B = I and enforcing normalized rows for the matrix
A. The image descriptors and the datasets given in [6] are used
to train and test the learned similarity metric with difference being
normalizing the descriptors. The resulting false positive rates for
95% recall are shown in Table I. For comparison, the performance
of using the normalized descriptors without any learning has been
shown. Even without training for the matrix B, the proposed metric
provides a good similarity estimation performance. The presentation
will include further results also with the training of B and using
additional datasets.

TABLE I
FALSE POSITIVE RATE CORRESPONDING TO 95% RECALL

Trained Dataset Tested Dataset Proposed Baseline

Yosemite Liberty 17.83 23.82
Yosemite Notredame 10.71 17.25
Liberty Yosemite 20.20 17.36
Liberty Notredame 11.25 14.77
Notredame Liberty 16.87 21.59
Notredame Yosemite 20.18 19.50
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