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Abstract

We present a novel method to recover images of faces,
particularly when large spatial regions of the face are un-
available due to data losses or occlusions. In contrast with
previous work, we do not make assumptions on the data
neither during training nor testing (such as assuming that
the person was seen before or that all faces are perfectly
aligned and have identical head pose, expression, etc.). In-
stead, we propose to tackle the problem in a purely unsuper-
vised way, leveraging a large face dataset. During training,
first we cluster faces based on their landmark’s positions
(obtained by an automatic face landmark estimator). Then,
we model the face appearance for each group using sparse
coding with learned dictionaries, with one dictionary per
cluster. At test time, given a face to recover, we find its be-
longing cluster and occluded area and restore missing pix-
els by applying the group-specific sparse appearance repre-
sentation learned during training. We show results on two
“in the wild” datasets. Our method shows promising re-
sults on challenging faces and our sparse coding approach
outperforms prior subspace learning techniques.

1. Introduction
Human faces captured in real conditions often are par-

tially hidden by occlusions due to a subject’s interaction
with the environment or factors such as wearing sunglasses,
hats, long hair, etc. Furthermore, data transfer or storage
errors can cause large areas of the image to be unavail-
able. Our proposed approach is able to recover the face
occluded/unavailable regions in a seaming-less manner, re-
sulting in images where the face is fully visible, Fig. 1.

The proposed approach has a wide range of applica-
tions. Examples include image forensics (recovering lost
data), video-conferencing (recovering a person’s smile even
if the mouth is hidden) or image editing, to name just a few.
This method can also be useful as a pre-processing to fa-
cial recognition tasks which are hindered by heavy occlu-
sions (face alignment [5], expression detection [28], iden-
tity recognition [15], face retrieval [32], etc.).

Prior work [12, 21, 31, 41, 13, 25, 7, 19, 24, 26] fo-
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Figure 1: Example results. Our method is able to reconstruct a face
presenting missing data or occlusions. In contrast to prior work, it
can do so for a variety of head poses, identities and expressions,
and does not require the person to have been seen before. More-
over, the reconstruction is able to preserve closely the person’s
original expression exploiting spatial correlations between differ-
ent parts of the face during human display of emotion.

cuses on performing face recovery in a pose and expression-
neutral scenario, very often using several pictures of the
same person for training and assuming all faces are per-
fectly aligned. In real-world conditions, however, faces can
show a wide variety of head poses and expressions, and
one cannot assume that the subject was seen before nor that
faces are all perfectly aligned and scaled.

In this paper we propose a method able to recover faces
regardless of its head poses, expressions or identities while
avoiding any prior assumption on the data and dealing with
the faces directly in an unsupervised fashion. We also
specifically design our approach to preserve the original
subject’s expression. This is important since it is well
known that facial spatial dependencies are highly correlated
to face expressions [14].

In order to achieve our goal, we propose to leverage a
large existing “in the wild” face database containing > 70K
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images of 530 celebrities, called FaceScrub [32]. The pro-
posed approach is as follows: 1) cluster the training faces
based on their normalized landmark’s positions (result of
an automatic face landmarking method [5]) and 2) model
facial appearance inside each cluster using sparse coding.

The landmark-based clustering ensures that faces are
grouped according to their similarity in terms of head pose
and the overall shape of facial parts (expressions). Then, the
cluster-specific modeling of appearance will exploit subtle
spatial dependencies to achieve in-painting of missing face
pixels in a seaming-less manner.

The contributions of this paper are several:

1. A novel method to recover lost pixels from a face im-
age. Unlike prior work, our method does not need
identity, pose nor expression to be known a priori nei-
ther during training nor testing. Moreover, as far as
we know, this is the first method that performs an
expression-based recovery, leveraging the well known
fact that some natural human expressions are mani-
fested in all parts of the face (e.g. both the eyes and
the mouth take a particular form when one smiles).

2. A hybrid clustering / sparse coding method wherein
a dictionary is learned from the images corresponding
to each landmark cluster. The fact that images inside
each cluster are very similar means that the implicit
dimensionality of the underlying data is low, and we
successfully exploit this by using dictionaries that are
highly undercomplete (e.g., 80 atoms for a signal space
with several thousand dimensions), making it further
possible to use signal vectors with supports covering
the whole face region.

3. Coupling of our approach with modern face landmark-
ing approaches [5, 17] able to detect occlusions, so that
the region to be recovered can be estimated on-line.

4. Close to real-time performance. Our method runs at
speeds close to 10 f ps on a standard PC using unopti-
mized Python code.

2. Prior work
Faces have been since the beginning a popular object on

which to benchmark novel subspace learning techniques,
aimed at improving representation power and robust-
ness compared to classical techniques such as PCA [33].
Some examples are Robust-PCA [12], Aproximated Prin-
cipal Gradient (APG) [25], Singular Value Thresholding
(SVT) [7] or Euler-PCA [26]. In these works, the training
and test subjects are usually the same.

Hwang et al. [21] were among the first to tackle the prob-
lem of recovering partially occluded faces in a realistic sce-
nario where training and test faces are different and a mor-
phable model is used to remove face shape variations. They

proposed to prototype faces as a PCA-based projection of
both shapes and textures, much like in the original AAM
formulation [9]. Similarly, [31, 41, 19] proposed to com-
bine morphable models with modern dimensionality reduc-
tion techniques such as the ones mentioned above. Finally,
[13] proposed a Bayesian framework that also allows the
automatic detection of face occlusions.

The most crucial difference between these approaches
and ours is the assumptions made on the data. They gen-
erally use controlled-scenario datasets such as FERET [34]
and AR [29] and assume that head pose is constant, that
faces were either previously aligned or that ground-truth fa-
cial landmarks are known, that all faces have a neutral ex-
pression and often even train on each test subject.

Instead, we use images taken “in the wild” and make
no prior assumptions whatsoever. We use a face landmark-
ing method to estimate landmarks automatically and rely on
an unsupervised clustering to group similar faces together
before learning each group’s appearance. Furthermore, we
separate subjects into two clearly separated train/test sets,
never training on the subject whose face needs to be recov-
ered at test time. We further contribute by adapting sparse
coding techniques to the task, see Section 3.2. Finally,
we propose to couple our approach with modern face land-
marking methods able to estimate occlusion to build on-line
the face recovery mask.

For completeness, we also discuss some of the prior
work on other different areas of computer vision where one
can find some common ground with the techniques dis-
cussed in this paper. However, since they do not fully over-
lap with this work, we address them briefly due to space
constraints.

Inpainting This work is somewhat related to prior work
on image editing by example-based inpainting [11], where
an image region is replaced in a seaming-less manner by
stitching together fragments from the same scene. These
methods, however, struggle with very large regions, espe-
cially in presence of highly semantic content, which is typi-
cally the situation met for face recovery. In [18], these lim-
itations of example-based inpainting are circumvented by
relying on an external database: large scene occlusions are
completed using images from similar scenes. While this ap-
proach bears some connection to our work, it lacks appear-
ance modeling that is required to operate on very structured
semantic visual content like faces.

Face expression transfer Another example is facial ex-
pression transfer [38, 20]. However, these approaches deal
with fully unoccluded faces and the goal is usually that of
transferring expressions across individuals, or from a video
stream into a 3D animated model by estimating 3D facial
landmarks. Instead, our approach allows us to recover the



original expression in large occluded regions of the face,
based on what remains visible in the face.

Sparse coding applied to faces Sparse coding has been
used to address a variety of face-related tasks. The work
of [40] addresses the related face super-resolution problem
(known as face hallucination) using a hybrid whole-face
NMF factorization (without geometrical normalization) fol-
lowed by block-by-block sparse coding using a dictionary
consisting of examples. The work of [39] uses a whole-
face dictionary of examples but to address the face recog-
nition problem. In [22], the authors address the same ap-
plication but instead use a learned dictionary constrained
to have spatially-localized atoms. The work of [4] uses a
piece-wise affine physiognomy normalization for the task of
expression-neutral face compression, yet the authors again
use 8×8 blocks as signal vectors with dictionaries learned
for each spatial position.

The vast majority of algorithms employing sparse cod-
ing on images operate on small image blocks (e.g. 8× 8).
Besides the complexity issues related to larger dimension-
ality [36, 43], the reason for this is that spatial redundancy
decreases when using larger block sizes, making it diffi-
cult to use dictionaries of practical sizes. Yet images of
faces, particularly when the faces are geometrically normal-
ized using piece-wise affine warping, enjoy high spatial de-
pendency, making it possible to operate on the entire im-
age. Indeed [39] exploits this advantage to carry out sparse-
coding-based face recognition, and [4] employs a related
redundancy-enhancing approach for face compression.

Face landmark estimation The first step to our method
is based on face landmark estimation. Early work on
the topic includes Active Contours Models [23], Template
Matching [42], Active Shape Models (ASM) [10] and Ac-
tive Appearance Models (AAM) [9]. Popular modern ap-
proaches involve first detecting the object parts indepen-
dently and then estimating shape through flexible parts
models [16, 17]. Another family of approaches is that which
tackles shape estimation as a regression problem, learning
regressors that directly predict the object shape or the lo-
cation of its parts, starting from a raw estimate of its posi-
tion [8, 5, 35]. These methods are fast and precise, being
able to deal with large amounts of occlusion. We use the
approach in [5] due to its speed, capability of detecting oc-
clusion and availability of code on-line.

3. Proposed approach
Fig. 2 shows the outline of the proposed approach. Our

method relies heavily on the automatic estimation of face
landmarks, for which we use Robust Cascaded Pose Regres-
sion (RCPR) [5] re-trained using the exhaustive 300 faces-
in-the-wild challenge dataset [37].

Once face landmarks are detected, we normalize all faces
to be the same size and cluster faces based on their land-
mark distance, see Sec. 3.1. Then, we learn a separate ap-
pearance model for each cluster using sparse coding, see
Sec. 3.2. At test time, given a previously unseen occluded
image, we detect the occlusion mask in real-time from the
output of RCPR and recover the occluded pixels by apply-
ing the learned appearance model, see Sec. 3.3.

3.1. Face clustering

For face recovery to work, the key is to be able to recon-
struct the missing pixels using an appearance model (a.k.a.
texture model) learned on faces that closely resemble the
test face. Prior work supposes that all images are aligned (or
ground-truth landmarks are available), that faces show neu-
tral expressions and that the face to be recovered has been
seen during training. Under those conditions, one can apply
subspace learning techniques to learn a person-specific tex-
ture model, maximizing the chances that it will be able to
recover the missing pixels when occluded.

When all the above suppositions about the data are re-
moved, however, the task becomes daunting. Learning a
rich and at the same time generalizable global texture model
from any set of faces is practically unfeasible. This is a well
known fact, which is precisely the reason behind AAM’s
poor generalization performance compared to methods us-
ing more localized texture models such as ASM’s [30].

To avoid this issue, we propose to previously cluster
faces based on their similarity and then learn a separate ap-
pearance model for each group (explained in Section 3.2).

Interestingly, face landmarks are a natural way of encod-
ing both the head pose and expressions [8, 6]. Therefore,
performing an unsupervised clustering using the distance
between (position and scale normalized) landmarks can lead
to groups with similar overall appearance.

Given P 2-D landmark locations (typically around chin,
eyes, mouth, and nose) that implicitly encode the shape of
the face as S = [a,b] where a,b ∈ RP we derive a scale-
normalized version Ŝ = [â, b̂], with

â =
a−min(a)

max(a)
, b̂ =

b−min(b)
max(b)

. (1)

Here min(.) and max(.) are the minimum and maximum
values of a vector and we abuse notation of the subtract and
division operations to represent element-wise operation.

Once landmarks are normalized, we apply k-means al-
gorithm to all N training landmarks Ŝi, i∈ {1 · · ·N}. Instead
of setting the parameter K (number of clusters), we prefer
to fix it to a large number (e.g. 103) and enforce a minimum
cluster size SZ. Note that while both parameters have the
same role (higher SZ will cause fewer clusters to be found,
identical to setting a lower K), SZ is much more intuitive



Figure 2: Method outline. During training our method clusters all faces based on their normalized landmark’s positions and models facial
appearance inside each cluster using sparse coding. During testing the belonging cluster is found and the group-specific learned model is
applied to recover occluded pixels, estimated on-line.

Figure 3: Randomly-selected faces corresponding to some exam-
ple clusters (row-wise), using minimum cluster size SZ = 10.

since it will control the amount of training images we will
be using to build our appearance model.

Fig. 3 shows an example of some of the clusters found
by kmeans using SZ = 10 1. As it can be seen, faces inside
a cluster are correctly aligned and show similar head pose
and expression, exactly as needed for the next step.

3.2. Sparse encoding of face appearance

Once training faces are clustered, we learn for each
group an appearance model that we will later apply to re-
cover missing pixels from testing faces. Cluster-specific
model relies on first normalizing training faces in the clus-
ter, both geometrically (using an invertible piecewise-affine
warp toward average shape) and photometrically (via pixel-
wise centering of intensities). Resulting aligned face tex-
tures are then sparsely encoded based on a learned dictio-
nary. We describe these steps in the present section.

1We manually separate men and women during training and testing

Figure 4: Visualization of the delaunay triangulation from face
landmarks

Cluster-dependent face alignment: The first step of
our modeling is to apply a geometrical normalization, warp-
ing all images belonging to the same cluster to show an
aligned face shape. We first define a standard face shape
S̄ by averaging the scale-normalized shape of the N train-
ing faces in the cluster:

S̄ =

[
1
N

N

∑
n=1

ân,
1
N

N

∑
n=1

b̂n

]
. (2)

A standard Delaunay triangulation DT (S̄) =
{(ki, li,mi) ∈ J1,PK3}i is then computed from the P
landmark locations in the average shape S̄ . Each landmark
triplet (ki, li,mi) defines a triangle in the standard image S̄
or in an arbitrary input image S , see Fig. 4. The piecewise
affine warping normalization then consists of warping
the pixels in each triangle from the input image to the
corresponding triangle in the standard image using the
affine transform uniquely defined from the three pairs of
matching vertices.

Sparse appearance modeling: The normalized face im-
ages described previously are rasterized to form signal vec-
tors z ∈ Rd , with d the number of pixels. We will de-
compose the mean-removed signal vectors y = z− z̄ using



sparse coding. The mean vector z̄ is taken to be the average
of all z vectors extracted form training images in the cluster
of interest. In practice we will extract vectors z only from
those positions F in the image that are expected to depict
the face and not the background, see Fig. 6.

Using whole-image rasterization to produce signal vec-
tors results in uncommonly large vector dimensions (e.g.
d = 104 for 100x100 images), and hence we will need to
use an undercomplete dictionary matrix and learn it using
stochastic gradient descent [3].

Sparse coding: Given a dictionary D, we use a standard
formulation of sparse coding

x◦(y,D) = min
x
|y−Dx|22 +λ|x|1 (3)

relying on an `1 penalization |x|1 = ∑i |xi| [1]. Given the
decomposition x◦ of the vector y, an approximation ŷ of y
can be obtained using ŷ = Dx◦.

Dictionary learning: In order to represent recurring spa-
tial patterns, we will learn the dictionary matrix D required
in (3) from the set of N training vectors {yn ∈Rd}N

n=1 using
the following objective:

argminD,{xn}

N

∑
n=1
|yn−Dxn|22 +λ |xn|1, |dk|2 ≤ 1,∀k. (4)

Given the uncommonly large dimensionality of the signal
space addressed by our face-inpainting approach, we use a
learning method [27] based on per-atom block-coordinate
descent using stochastic updates. At iteration n < N, the
approach incorporates a randomly selected sample yn into
the solution for each column dk of D by setting the gradient
of (4) with respect to dk to zero.

3.3. Face recovery
Once training has been performed off-line, we can re-

cover missing/occluded pixels from any previously unseen
face image. First, as before, we apply RCPR to estimate the
face landmarks.

Note that RCPR is also capable of estimating whether
landmarks are or not occluded (albeit with a low recall) if
trained on a dataset containing occlusion ground-truth infor-
mation, such as COFW [5]. When this is the case, RCPR
will output the “degree of occlusion” of each landmark,
adding a third component o to the shape parametrization:
S = [a,b,o] where a,b,o ∈ RP and o ∈ [0,1].

From this rough occlusion estimation, we can build an
occlusion probability mask by performing Delaunay trian-
gulation on the landmarks and setting each triangle’s occlu-
sion to the average of its anchor landmarks 2. Fig. 5 shows
example RCPR’s results and the occlusion masks built for
some occluded faces (from COFW test set).

2In fact we can re-use the triangulation computed for the face cluster-
specific image warping, without further computation

Figure 5: Example RCPR success cases. Top: landmark estima-
tion results (landmarks with o > .5 are plotted in red to signal
occlusion). Bottom: occlusion masks computed from landmarks
(>intensity=>occlusion).

Figure 6: Examples of cluster-specific synthetic masks used in
Figures 7, 8 and 9 .

Recovery using sparse coding Once the occlusion mask
computed as described before, we conduct inpainting based
on sparse coding as follows: sparse code of input image is
computed using visible pixels only, and used to produce a
complete reconstruction, including of occluded pixels. Let
A represent the indices of the available pixels of y. Letting
yA (respectively DA ) denote the subvector (sub-matrix) ob-
tained by retaining the coefficients (rows) at positions A , an
approximation of the whole vector y can be obtained from

Dx◦(yA ,DA). (5)

In Fig. 6 we depict four example configurations of F
(in white and gray), background (black), available pixels
(white) and missing pixels (gray).

4. Evaluation
4.1. Datasets
FaceScrub The FaceScrub dataset [32] consists of more
than 100K images of 530 different actors and actresses,
along with face bounding boxes. The dataset is provided
as image urls, and currently only about 75% of the urls
(76,800 images) are still valid and point to the correct data.

We split these available images into training and testing
sets by holding out, as a testing set, all available images of
50 actors and 50 actresses.

This results in a training set composed of 29K/32K im-
ages of actresses/actors, respectively, and a testing set of



7K/5K images. Of all these, for computational issues we
use a random subset (roughly 8K/8K images for training
and 2K/2K for testing). We further leave out some of the
male actor’s images as a validation set to tune parameters
of our system and all other subspace learning techniques
benchmarked.

In order to show some quantitative results (impossible on
naturally occluded images), we use the test set together with
synthetic occlusion masks (upper/lower part of the face) de-
rived from the landmark detection associated to each clus-
ter, see Fig. 6.

In Section 4.2 we explore the impact of parameters,
while in Section 4.3 we compare our sparse coding ap-
proach against other popular techniques [12, 25, 7, 26]

COFW The Caltech Occluded Faces in the Wild (COFW )
dataset [5] consists of 2K training and 500 test images with
varied types and amounts of occlusions. Each image is
made available together with the ground-truth 29 landmarks
in the LFPW [2] format, with an extra flag that encodes
whether each landmark is occluded or not.

We keep only the images from the test set, and use them
to show-case results when coupling our method with a real-
time occlusion detection system (provided by RCPR), see
Sec.4.4. Please note that for these images we can only show
qualitative results, since the occlusions are fully natural and
therefore the “true” unoccluded face is unknown. Note also
that when carrying out tests on COFW, we use clusters and
dictionaries learned on the FaceScrub dataset, using COFW
strictly as a testing set.

4.2. Parameter selection

We use the FaceScrub training set to build a set of clus-
ters using a K-means algorithm in landmark space. Rather
than specifying the number of clusters directly, we spec-
ify the minimum cluster size SZ, since the learning re-
quires a minimum number of training examples. Since we
use a hybrid approach that mixes clustering together with
piecewise-affine warping, the canonical face landmark lay-
out is computed on a per-cluster basis to be the mean land-
mark layout for all training faces in the cluster.

In Fig. 7, we evaluate the impact on our sparse coding
approach of (i) the minimum cluster size SZ, (ii) the number
of dictionary atoms N, and (iii) the testing and (iv) training
sparsity levels. We plot Peak Signal to Noise Ratio (PSNR)
log10(

2552

MSE ), where the Mean Square Error (MSE) is com-
puted over the pixels in the occluded region. The resulting
PSNR value is computed over all clusters, and the average
value is plotted along with the resulting standard deviation
(as error bars).

Given that the face pose varies between landmark clus-
ters, in these experiments we carry out parameter selec-
tion using cluster-dependent masks generated automatically
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Figure 7: Occlusion PSNR over the validation set (male faces
only) versus various system parameters.

from the mean landmark layout for the cluster so that the en-
tire face is used as the signal vector support, and the top or
bottom half of this support is used as an occluded region.
We learn one dictionary in image space per landmark clus-
ter using the FaceScrub training dataset, and cross validate
against the FaceScrub validation set.

The parameter with most impact on performance is the
cluster size SZ. The optimal value SZ = 100 reaches a com-
promise between having as many training faces as possible
but without them being too different among themselves (the
higher SZ the fewer clusters are found and therefore there
is a higher intra-cluster variance). The clear drop in per-
formance for high values of SZ justifies the need for the
proposed face clustering.

4.3. Synthetic occlusion/missing data

We compare our sparse coding recovery method against
several other popular techniques: (PCA [33], Robust-



(a) Upper mask, SZ = 100 (b) Lower mask, SZ = 100

(c) Upper mask, SZ = 10 (d) Lower mask, SZ = 10
Figure 8: Quantitative result comparison between our sparse coding approach and other techniques for different values of SZ and different
occlusion masks. Each plot depicts the cumulative probability distribution of the PSNR between original and recovered face.

PCA [12], Aproximated Principal Gradient (APG) [25],
Singular Value Thresholding (SVT) [7] and Euler-
PCA [26]). All these techniques are applied within the con-
text of our clustering-based framework, using strictly the
same training/test faces than those used by our method. For
fairness of comparison, we also used the validation set to
tune the parameters of each one of these techniques, see
Supp. Material for more info.

Fig. 8 shows the results for both SZ = 10 and SZ = 100
on both the upper and lower occlusion masks shown in Fig.
6. We compute occlusion PSNR values over all clusters and
plot the probability distribution of each. Fig. 9 shows sub-
jective comparisons for a selection of images from different
clusters. Our approach outperforms all other techniques by
0.7 dB on average. It is also worth noting that the lower part
of the face seems to be always easier to reconstruct than the
upper part. Classic PCA seems to be the least competitive
approach of all those benchmarked.

4.4. Real occlusions

We now show results of our method on COFW images
displaying real face occlusions such as glasses, headwear,
and hair. We apply RCPR to predict both the landmark’s

positions and occlusion, and from this information we de-
rive an associated occlusion mask by weighing the compo-
nents of a Delaunay triangulation of the landmarks based
on the number of occluded vertices, as explained in Sec-
tion 3.3. Since the resulting masks varies on a per-image
basis, we train a new dictionary for each associated mask
using the FaceScrub training examples of the associated
cluster. We show some example results for faces where oc-
clusion was correctly detected by RCPR in Fig. 10 (more
available in Supp. Material).

Our method can output very realistic reconstructions
even in these challenging conditions, under a variety of head
poses, expressions and occlusions. Thanks to our proposed
cluster-specific texture learning the reconstructions are re-
alistic, leveraging the well known fact that natural human
expressions are manifested in all parts of the face (e.g. the
eyes take a particular form when one smiles).

5. Conclusion
We propose a novel method to recover lost pixels from a

face image. Our method does not need identity, head pose
or expression to be known a priori neither during training
nor testing. During training, first we cluster faces based on
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Figure 9: Reconstruction examples with SZ = 100 varying the reconstruction technique used after clustering. From left to right: original
image with occluded region, Our Sparse coding approach, PCA, Robust-PCA [12], Euler-PCA [26], SVT [7] and APG [25].

Figure 10: Original image (left) and reconstruction using our proposed method (right) when using automatically detected occlusion masks.

their landmark’s positions (obtained by an automatic face
landmark estimator). Then, we model the face appearance
for each group using sparse coding with cluster-specific dic-
tionaries. At test time, given a face to recover, we find its be-
longing cluster and occluded area and restore missing pixels
by applying the group-specific sparse appearance represen-
tation learned during training.

Systems that carry out automatic occlusion detection and
reconstruction have important applications, for example, in
augmented reality settings, as well as a visual aid for peo-
ple with conditions, such as prosopagnosia, preventing them
from easily recognizing faces (conditions exacerbated by
the presence of occlusions). The results illustrated in Fig.
10 suggest that building such a system is indeed possible.
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