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1. Introduction

Convolutional Neural Networks (CNNs) learned on
the ImageNet dataset have been shown to be excel-
lent feature extractors that, combined with linear SVM
classifiers, yield outstanding results when transferred
to target datasets (e.g., Pascal VOC, MIT Indoor 67
and Caltech) not used during the CNN learning pro-
cess [?]. Given the large number of free parameters in
CNN models (tens of millions), learning CNNs directly
on these smaller target datasets is a difficult task. Yet
recent work [?, ?] has established that it is possible to
adapt the transferred CNN parameters to the smaller
target dataset to further improve results.

The approach we present herein addresses this sce-
nario by learning a single adaptation layer jointly with
linear classifiers under a max-margin objective. Un-
like existing adaptation schemes, our learning process
is very fast, taking in the order of a few minutes when
running on a single core CPU, and does not rely on
expensive dataset augmentation methods. We further
show that it is possible to obtain very good results with
features as little as size 20.

Oquab et al. [?] have proposed a related CNN adap-
tation method that consists of re-learning, on the Pas-
cal VOC dataset, the last two layers of the transferred
architecture. The learned adaptation layers operate on
patches from the original images, with the patch ovelap
with the object bounding box determining each patch’s
label at training time. The approach is hence limited
by the availability of expensive bounding box annota-
tions, and in this work we show that comparable results
can be obtained without relying on bounding box an-
notations.

Chatfield et al. [?] consider an objective based on a
hinge-loss that is similar to the max-margin objective
we propose herein. Their adaptation approach consists
of continuing the learning process began on ImageNet
on the new target dataset, but with a slower learning
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rate. The transition layer between the last convolu-
tional and first fully connected layer, in particular, is
updated in the process, a costly procedure (in terms of
learning time and required hardware) given the large
size of this layer (tens of millions of coefficients).

2. Proposed approach

Our approach consists of jointly optimizing the lin-
ear classifiers wy ... wg of the K target classes, along
with the model parameters M € R™*P b € R” using

= c
argmin Z |wi|* + Wl

wi k=1

i\’: 12 (ylk h (Mx; + b)T wk>
i=1

(1)

where h and /¢ represents the Rectified Linear Unit
(ReLU) and hinge loss operator, respectively, x; €
R? are the CNN feature representations of the im-
age and y; , € {—1,1} are labels indicating the ab-
sence/membership of image 4 in class k. For notational
simplicity, we disregard the classifiers’ bias terms.

Block-coordinate SGD. We use block-coordinate
Stochastic Gradient Descent (SGD), sequentially up-
dating wi,...,wg, M and b on the same batch of b
images, correspondingly using b SGD steps per block
of coordinates before randomly drawing a new batch
(without repetition in each epoch). We initialized M
using r randomly selected training features. Bias term
b and wq,...,wWg are initialized to zero.

Early stopping. To avoid over-fitting of the model
to the training data, we use an early stopping criterion
guided by the performance over the validation set.

Adaptive learning rate. We use an adaptive
learning rate for M that starts at 1 and decays by half
to an empirical minimum of 1072, This rate is up-
dated every 200 images using cross-validation by run-
ning SGD on 50 training images chosen from the next
batch. At the end of the process, the final learning rate
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Method Train time Dim # params. | mAP
PRE1000C [?] ~ 1 day - ~85M | 77.73
CNN S TUNE-RNK]|?] - 4K ~100M |82.42
Ours 120s 20 2759 76.24

Ours 190s 70 9550 77.58

Table 1. Comparison of our proposed method with two ex-
isting CNN adaptation schemes.

is used to do a single training run over the validation
images.

3. Results

We evaluate our method using Pascal VOC 2007 as
a target dataset, using the standard mean Average Pre-
cision (mAP) performance measure. This dataset con-
sists of 4192 test and 5011 training images. We hold
out 811 training images, choosing them uniformly over
all classes, and use them as a validation set. Each im-
age is represented using the VGG-M (128-dimensional)
CNN model [?].

In Fig. 1 we evaluate the impact on test set mAP
of varying the numer of rows r of M. We consider two
cases: joint optimization of M and the classifiers, as per
(1), and optimization of only the classifiers, keeping M
fixed to its initialization value. We can observe that
our performance is constant for all output feature sizes
r. The adaptation layer provides a large advantage for
all r values of as much as 17 points in mAP for r = 20,
and 1.2 points for r = 128.

In Table 1 we compare our method with two state-
of-the-art CNN adaptation methods [?, ?]. Our result
of 77.58 is comparable to the 77.73 mAP of [?], yet our
model has 4e3x less free parameters and takes only a
few minutes to learn on a single core CPU ([?] takes
close to one day on a GPU). The results of [?] are
better than ours, but their CNN model is even larger
than [?], with a comparable increase in learning time
and required processing power.

In Table 2 we show the advantage of using an adap-
tive learning rate versus a fixed learning rate by dis-
playing the test set mAP after a fixed number of it-
erations. In Fig. 2, we illustrate our early stopping
approach by plotting the test set, training set and val-
idation set mAP for a sample run.

In Fig. 3 we evaluate the effect of batch size in
our block-coordinate SGD optimization process, not-
ing that, for a fixed number of epochs, larger batch
sizes (up to the training set size) result in better per-
formance.
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Figure 1. Effect of varying the number of rows r in M on

performance. Here we also compare the results of Joint
Optim vs Classifs.
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Figure 2. Illustration of cross-validation strategy: the opti-
mal parameters are chosen based on the best performance
on the validation set, which occurs at approximately 20
epochs.

Fixed Adaptive

Learn rate| 107°> 10=2 0.09 0.5 1.0 -

mAP 74.66 75.60 76.81 74.96 73.43| 77.25
Table 2. Test set mAP when using fixed learning rate and
adaptive learning rate.
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Figure 3. Performance as a function of batch size for 20
epochs of training.



