
BLOCK PREDICTION USING APPROXIMATE TEMPLATE MATCHING

Joaquin Zepeda1, Mehmet Türkan1,2, Dominique Thoreau1

1 Technicolor, 975 Avenue des Champs Blancs, Cesson Sévigné, France
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ABSTRACT

Template matching methods have been shown to offer bit-
rate savings of up to 15% when used for in-loop prediction
in compression. Yet the required nearest-template search
process results in prohibitive complexity. Hence, in this pa-
per we use approximate nearest neighbor search methods
to successfully address this drawback of template matching
methods. Our approach uses a template index that is up-
dated during the decoding process, yet the incurred overhead
pays off in reduced nearest-template search complexity, re-
sulting in a significant gain in template search complexity.
Rate-distortion experiments further indicate that there is no
rate-distortion penalty resulting from our proposed approxi-
mate template search method, and in fact a small gain of 0.1
dB is observed.

Index Terms— Template matching, intra-coding, image
compression, approximate nearest neighbor, indexing

1. INTRODUCTION

Closed-loop intra prediction is a key component of image
and video compression algorithms. The term “intra” refers
to the fact that the prediction technique is performed using
only the information that is contained within an image or
an intra-frame in a video sequence. The underlying basic
idea is to first predict a block in the image using its avail-
able self-information, and then encode the prediction residue
signal instead of the block itself in order to minimize the
amount of information that is encoded and transmitted to the
decoder. Most of the image prediction algorithms operate
on image blocks in a raster scan order. The blocks usually
do not overlap so that residue signals are transformed, quan-
tized, and entropy encoded dis-jointly. The reconstructed
block is finally obtained by adding the quantized residue to
the prediction. For example, in H.264/AVC standard, there
are two intra prediction types called Intra-16x16, Intra-8x8
and Intra-4x4 respectively [1]. The Intra-16x16 type supports
four intra prediction modes while the Intra-4x4 and Intra-8x8
type supports nine modes. A macro-block of size 16x16
pixels is divided into sixteen 4x4 blocks. Each 4x4 block is
predicted from prior encoded samples from spatially neigh-
boring blocks. In addition to the so-called DC mode which

consists in predicting the entire 4x4 block from the mean of
neighboring pixels, eight directional prediction modes are
specified. The prediction is done by simply propagating (or
extrapolating) the pixel values along the specified direction.
The encoder uses a tool which is called Lagrangian rate-
distortion optimization (RDO) to select the best prediction
type (either Intra4x4 or Intra16x16) and also the best mode(s)
which have to be then transmitted to the decoder in addition
to the residue signals. The state-of-the-art video compression
technology is now being considered for the new standard
on high-efficiency video coding (HEVC) which gives sig-
nificant gains over H.264/AVC through innovations such as
improved intra-prediction, larger block sizes, more flexible
ways of decomposing blocks for intra- and inter-coding [2].
Intra prediction and coding in HEVC can be considered as
an extension to those of H.264/AVC. The main elements in
the HEVC which differ from H.264/AVC intra coding in-
clude angular prediction with 33 prediction modes (up-to 35
intra modes in total) with larger block sizes up-to 64x64 or
more, quad-tree based coding structure, planar prediction,
contextual information based intra mode coding.

The H.264/AVC and HEVC intra prediction approaches
(as briefly described above) are suitable in the presence of
contours when the directional mode chosen corresponds to the
orientation of the contour. However, they tend to fail in more
complex structures and highly textured areas. Thus there is
still research going on for intra prediction in the existing stan-
dard to achieve better performance in intra-frame compres-
sion. An alternative method based on template matching has
been widely considered for intra image prediction [3–7]. A
so-called template is formed from previously encoded and de-
coded pixels in a close neighborhood of the unknown block
to be predicted. The best match between the template and the
candidate texture patch neighborhood (of the same shape as
template), within a causal search window, allows finding the
predictor of the unknown block. In [3], a prediction scheme
has been proposed by replacing the H.264/AVC (Intra4x4)
DC mode with template matching. This simple replacement
results in an overall performance gain of 0.1-0.4 dB in in-
tra coding. In a similar spirit, another template matching
based algorithm has been described in [4]. In this approach,
template matching prediction is conducted for each 2x2 sub-
blocks. The four best match candidate sub-blocks finally con-



stitute the prediction of the 4x4 block to be predicted. This
method has been tested in H.264/AVC Intra4x4 as an addi-
tional prediction mode, leading to more than 11% bit-rate
savings. It has later been improved in [5] by averaging mul-
tiple template matching predictors, also including larger and
directional templates, resulting in more than 15% coding ef-
ficiency. There are various extensions of template match-
ing based image prediction in the literature, e.g., a priority-
based approach [7], and an adaptive illumination compensa-
tion based method [6].

For the next-generation video compression standard, one
needs to look deeply into some of the challenges faced in the
current standard. Keeping in mind that the intra-coding effi-
ciency has not been sufficiently improved from H.264/AVC to
HEVC and approximately 1/3 of the bit-stream is still occu-
pied with the intra-coded frames, in this paper focus on reduc-
ing the complexity of template matching in order to enjoy the
large intra-coding bit-rate gains it offers at reasonable over-
head. To this end, we use existing indexing methods [8–11]
based on data partitioning to carry out an approximate nearest
neighbor search instead of the exhaustive search employed by
all existing methods. The indexing structures used are based
on K-means and are learned offline and populated during im-
age decoding by the templates made available by each newly
decoded image block. The overhead incurred in populating
the template index pays off in reduced search complexity, for
a total decoding complexity up to 2.3× smaller.

The remainder of this paper is organized as follows: In
Section 2, we review template matching and set the basis for
the presentation of our algorithm, which we do in Section 3.
We then present our experimental results in Section 4 and con-
cluding remarks in Section 5.

2. BLOCK-PREDICTION BASED ON TEMPLATE
MATCHING

We assume that we are given an image of size r × c from
which we extract overlapping blocks of size b× b pixels. Let
yi ∈ Rb2 represent the i-th such block which has pixel i at
its upper left corner. We are concerned with obtaining a pre-
diction ŷi of the value of yi given only a vector z̃i ∈ Ra, re-
ferred to as the template for block i, consisting of pixels from
the previously-decoded region, referred to as the causal re-
gion. Since the prediction ŷi is available both at the decoder
and encoder side, the encoder need only send a compressed
version r̃i of the residual ri = yi − ŷi, and the decoder can
obtain an approximation ỹi of block yi from

ỹi = ŷi + r̃i. (1)

Note that, for rate efficiency, the encoder only computes and
sends encoded residuals for non-overlapping blocks. We will
use subscript t to denote non-overlapping block indices, not-
ing that t takes non-contiguous values, with t = (krb+lb) for

the block at row k and column l of the grid of non-overlapping
blocks. Using the standard raster-scan (left-to-right, top-to-
bottom) encoding/decoding order implies that positions t ∈
{krb+ lb}kl are processed in order of increasing value of t.

A very common layout (used in video coding standards
[2]) for the position of the pixels in z̃t relative to those in
block yt is illustrated in Fig. 1: the template z̃t ∈ Ra is
built from the a = 2b+ 1 pixels constituting the top and left
boundaries of the block yt. Using such a layout is compati-
ble with raster-scan processing and incurs very low prediction
complexity, as only a small number of the previously-decoded
pixels are used.
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Fig. 1. Standard spatial layout of template z̃t (delineated in
dots) and block to predict yt (in black). Each position i has
an associated template z̃i and block yi. Only non-overlapping
blocks yt, t ∈ {kcb + lb}kl (delineated by solid, thick gray
lines) are encoded, but all templates z̃i are indexed. The tem-
plates z̃i, i ∈ Tt (those having upper-left pixel in the yel-
low region) are indexed at the same time that block yt is
encoded/decoded. The processing is done following a raster
scan order. The causal region consisting of pixels decoded
before block t is denoted in white, and the causal neighbor-
hood of block t is delineated with a dashed line. Spatial bins
Bm are delineated by dash-dotted red lines. In this example,
r = 32, c = 48, a = 17, b = 8, and |Bm| = 102 (except for
bins at the bottom and right boundaries).

Given the template z̃t, many possible methods exist to ob-
tain a prediction ŷt for block t. For example, intra-coding
prediction used in recent video standards consists of copying
the pixels in z̃t along one of several possible directions across
block t. In this work, however, we are interested in template
matching methods that use the previously decoded blocks ỹi,
i ∈ S(t), to predict the current block yt, where S(t) denotes
all pixel positions i with a related template z̃t and block ỹt
not falling outside the image and within the causal region, as
per the layout in Fig. 1.

For example, one simple approach uses the pixels ỹj cor-



responding to the nearest template z̃j as the prediction for yt:

ŷt = ỹj s.t. j = argmin
i∈S(t)

‖z̃t − z̃i‖2 (2)

A second approach instead uses a linear combination of
the vectors ỹjk , k = 1, . . . ,K corresponding to theK nearest
templates z̃jk of z̃t,

j1, . . . , jK s.t. ‖z̃t − z̃jk‖ ≤ ‖z̃t − z̃i‖ ∀i /∈ {jk}Kk=1,

where i, jk ∈ S(t). (3)

Given the indices jk, we use the matrix of nearest tem-
plates

Z̃t = [z̃j1 | . . . |z̃jK ] (4)

and the matrix containing the corresponding blocks from the
causal region

Ỹt = [ỹj1 | . . . |ỹjK ] (5)

to compute an approximation for block t as follows:

ŷt = Ỹt

(
Z̃+
t z̃t

)
, (6)

where the superscript + symbol denotes the pseudo-inverse
operation.

Note that the expressions in (3) and (6) reduce to the case
(2) when we set K = 1, and hence from now on we discuss
only the general case of K nearest neighbor-based template
matching.

Border effects. For the benefit of presentation, we have
ommitted discussing template matching for border positions.
Being a common problem to all template-matching-based
prediction methods, we assume that a standard solution is
employed consisting, for example, of encoding the first sev-
eral rows and columns of the image using an alternative
encoding, and hence we assume that a template and a causal
region is available for all positions i in the image.

2.1. Analysis of template matching complexity

One of the biggest drawbacks of prediction methods based
on template matching is the increased decoder complexity re-
lated to the neighbor search operation (3). In order to better
understand the complexity problem, we now derive complex-
ity bounds for the K-nearest neighbor template matching op-
eration. Letting r × c denote the image dimensions and b the
block size, the complexity of the K nearest neighbor search
operation is then O

(
log(K)a(rc)2

)
. This complexity bound

assumes a min-heap implementation wherein a list of K best
distances is kept in a sorted state and updated whenever a bet-
ter neighbor template is found. Yet even with this optimiza-
tion, the complexity can be quiet high.

One way to reduce this complexity is to instead consider
only templates at a subset of positions in the image. For exam-
ple, considering only a fraction of α ≤ 1 possible horizontal
or vertical template positions reduces the complexity to

O
(
log(K)a(rcα)2

)
, (7)

representing a decrease factor of α2. The possible positions
can be taken to be the causal neighborhood of (αr)·(αc) pixel
positions closest to the current block t, as illustrated by the
dash-delineated region in Fig. 1. Alternatively, the positions
can be taken from a 1

α -downsampled pixel-positions grid.
Sub-pixel template matching. An extension of template

matching that has been shown to improve the prediction ac-
cuaracy is to further consider patches at sub-pixel positions.
In terms of complexity, this amounts to using α > 1. Given
the squared complexity dependence on α, this increased pre-
dictive accuracy comes at a steep price.

3. ACCELERATING TEMPLATE MATCHING USING
APPROXIMATE SEARCH METHODS

ANN
Search

Template
Indexing

Ỹt

(
Z̃+

t z̃t
)

+
Transform
Encoder

+
z̃t

z̃i, i ∈ Tt

Z̃t, Ỹt
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− rt r̃t

ŷt ỹt

Fig. 2. Encoding and decoding process for block yt, t ∈
(krb + lb)kl. Shaded components are common to both en-
coder and decoder; white components are exclusive to the en-
coder. Components with dashed borders are novel relative to
the standard predictive/residual encoder.

In this work we propose using Approximate Nearest
Neighbor (ANN) search methods to accelerate the template
matching process. We present a data-partitioning accelera-
tion method based on K-means [8] clustering as well as a
hierarchical extension. Hierarchical K-means [9] and related
methods based on residual quantization [10] and tree-based
data partitioning [11] have produced state-of-the art approxi-
mate nearest neighbor search methods in several applications
related to image search. In order to make it possible to effi-
ciently combine our ANN template matching methods with
the α-subset schemes described above, we further propose
arranging the templates in each data partition into spatial
bins.

3.1. Data partitioning approach

We assume that we are given a training setZ = {zl ∈ Ra}l of
templates extracted from a large number of training images.
The data partitioning methods we use are based on a set of N
codewords

c1, . . . , cN = argmin
a1,...,aN

∑
l

min
n
‖an − zl‖2 (8)

learned using the K-means clustering algorithm. The code-
words thus obtained implicitly define a partitioning of Ra into



N cells

Cn = {z ∈ Ra s.t. n = argmin
m

‖z− cm‖}, n = 1, . . . , N.

(9)
We use such a codebook at the encoder and decoder as follows
(cf., Fig. 2): given the template z̃t, an approximate search is
performed (in block ANN Search) for theK nearest templates.
The search consists of first finding the codeword cnt closest
to z̃t, and then exhaustively searching the related list

Lnt
= {i|i ∈ S(t), z̃i ∈ Cnt

}. (10)

The resulting K approximate nearest templates and their as-
sociated blocks are used to generate ỹt using (6) and (1).

Simultaneous to the decoding process, the templates z̃i
(those with upper-left corner in the yellow region in Fig. 1)
at positions i ∈ Tt, |Tt| ≤ b2, corresponding to blocks ỹi that
share pixels with the block ỹt currently being decoded (and
the causal region) need to be added to the template index for
latter processing (block Template Index): For every such po-
sition i, the template z̃i is assigned to a list Lni

associated to
its closest codeword cni

, incurring a cost of O (rcNa) oper-
ations per image. This complexity follows from assigning the
templates at each position i to a list once, and includes the
assignment required to find list Lnt in (10).

Assuming that templates are equally distributed across
cells (i.e., |Cn| = rc/N , ∀n), the cost for the entire image
of exhaustively searching the lists Lnt

,∀t, when restricted to
the α-causal neighborhood, isO

(
1
N (a+ log(K)) ·

(
rcα
b

)2)
.

Hence the total complexity of ANN template matching for
the entire image is

O
(

1

N
(a+ log(K)) ·

(rcα
b

)2
+ rcNa

)
. (11)

The last term represents the overhead of indexing all tem-
plates. In order to gain from this approach, this overhead
should be comparable to the previous terms, and from this
we can derive the following indication of a good value for N ,
where we use the approximation (a+ log(K))/a ' 1:

N ' (rc)
1/2 α

b
. (12)

3.2. Efficient approximate search in causal neighborhood

Enabling an efficient implementation of an approximate
search method inside the causal neighborhood requires that
we spatially index the lists Ln so that finding the intersec-
tion between those templates indicated by list Lnt and the
causal neighborhood of pixel position t can be done with
negligible overhead. The approach we propose consists
of first defining a uniform rectangular grid of spatial bins
Bm,m = 0, . . . ,M − 1, as illustrated by the double-lined
grid in Fig. 1. The list Ln is accordingly dividied into spatial
bins Lmn ,m = 0, . . . ,M − 1, satisfying

Lmn = {i|i ∈ Bm, i ∈ Ln}. (13)

Keeping the list Ln organized in spatial bins accordingly dur-
ing the encoding and decoding process requires negligible ex-
tra complexity. Note that the complexity bounds indicated
above are for the extreme case where |Bm| ' 1.

4. EXPERIMENTS

We use an efficient C implementation of our approximate
template matching method to carry out evaluations. We
train codebooks using the K-means algorithm on a training
set of 106 templates extracted form 104 images randomly
downloaded from Flickr. We use a different set of 1491 im-
ages [12] as our test set and compute the prediction PSNR
20 · log10

(
255

‖yt−ŷt‖

)
(top graph in Fig. 3 and Fig. 4) and

complexity, defined as the execution time in ms/pixel (bottom
graph), both averaged over all test images. We further break
out complexity into four components: compression (Trans-
form Encoder block and both addition operation in Fig. 2),
indexing (Template Indexing block), searching (ANN Search
block) and prediction (Ỹt

(
Z̃+
t z̃t

)
block). The default

parameters used, selected empirically, are: number of code-
words N = 10, multiple assignment factor B = 1, causal
neighborhood size S = αr · r = αc · c = 16, number of
templates K = 2, and block size b = 8.

Fig. 3 summarizes the complexity improvements that
can be obtained using our method: The baseline complex-
ity (0.583 ms) corresponds to the case N = 1, where an
exhaustive search of all templates in the causal neighbor-
hood is carried out. For N = 10, our method runs 2.23×
faster (0.261 ms). Interestingly, the prediction PSNR in-
creases slightly with increased number of codewords, and
we believe this is because the approximate search results in
blocks Ỹt with slightly increased diversity, and this benefits
the averaging done during prediction. Note that the search-
ing complexity (respectively, indexing complexity) decreases
(increases) monotonically with increasing N , as predicted
in (11), which we plot as a dashed line in the figure (with
adequate scaling). Note also that the value N = 2 predicted
by (12) is within an order of magnitude of the experimental
optimum given by N = 10.

In Fig. 4 we evaluate performance of our method as a
function of the block size b. The indexing penalty incurred
by our method becomes too large for increasing block sizes.
This is in part because of the increase in template space di-
mensionality b, but also because the number of blocks to en-
code decreases inversely proportionally to b2, while the num-
ber of templates to index remains constant. Methods exist that
reduce the indexing complexity by using hierarchical code-
books or cartesian products of codebooks, and we plan to ex-
plore these in the future.

In Fig. 5, we plot rate-distortion curves for image Lena
when using our approximate template matching method and
the baseline exhaustive template matching approach. We use
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a DCT transform with JPEG-like scaling of transform coeffi-
cients, followed by rounding and differential encoding using
zig-zag scanning, plotting the entropy of the resulting stream
in bits-per-pixel. As observed, our proposed method is not
only faster, but it also results in slightly better performance
over all rates, and this is not unexpected given the improving
PSNR trend in Fig. 3.

5. CONCLUSION

Template matching methods provide increased predictive
power that can result in as much as a 15% bit-rate savings.
Yet the large complexity increase of searching the best match-
ing templates limits the applicability of these methods. In this
paper we use approximate nearest neighbor search techniques
to successfully address this problem, resulting in complexity
reductions of 2.23×. Experimental tests indicate that there
is no rate-distortion penalty incurred by our method (in fact,
there is a small ∼ 0.1 dB gain for Lena).
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