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ABSTRACT

In this paper we propose a new method to automatically select the
rank of linear transforms during supervised learning. Our approach
relies on a sparsity-enforcing element-wise soft-thresholding opera-
tion applied after the linear transform. This novel approach to su-
pervised rank learning has the important advantage that it is very
simple to implement and incurs no extra complexity relative to lin-
ear transform learning. Furthermore, we propose a simple Stochas-
tic Gradient Descent (SGD) implementation suitable for large scale
learning, where SGD solvers have established themselves as the de-
fault workhorse.

We compare our method to various other metric learning tech-
niques in the application of image retrieval. This is one of the
remaining few areas where supervised learning of low-rank linear
transforms has not been fully exploited. The main reason for this is
the lack of adequate datasets that are large enough, and hence we
further introduce a new dataset consisting of groups of matching
images derived from Cable News Network (CNN) videos using
geometric verification and manual selection to find matching frames
with adequate variability.

Index Terms— Metric and similarity learning, image retrieval,
soft-thresholding, stochastic gradient descent, Cable News Network
(CNN) dataset

1. INTRODUCTION

Automated image search and comparison methods have become cru-
cial when searching for relevant images in a large collection, espe-
cially with the increasing size of image collections and the related
difficulty in manually annotating them. Many systems currently ex-
ist that enable such search approaches, including commercial web
search engines [1] that admit an image as the query and return a
ranked list of relevant web images; copyright infringement detection
methods that are robust to image manipulations such as cropping, ro-
tation, mirroring and picture-in-picture artifacts [2]; semantic search
systems that enable querying of an unannotated private image col-
lection based on visual concepts (e.g., cat) [3, 4]; object detection
systems that are robust to the image background content [5]; auto-
matic face verification methods [6, 7]; and vision-based navigation
systems used, for example, as part of the control mechanism of self-
driving cars.

One important tool in this panoply of image search applications
is the low rank linear transform of the form Mx. Learning such
linear transforms from supervised training sets endows metrics and
similarity measures such as the Mahalanobis metric or the related in-
ner product with task-tailored qualities. Penalty terms derived from
the sparsity inducing ¢;-norm (e.g., the trace or ¢»; matrix norms)

further exist that are continuous surrogates of the rank and are hence
used to determine it automatically.

Indeed low-rank linear transforms have been used extensively in
supervised learning. The Fisher vector faces approach [7], for exam-
ple, jointly learns both a similarity and a metric on the same feature
vectors and as part of the same objective for the application of face
identification. Approaches that detect whether a pair of face images
comes from the same individual (a problem called face verification)
have also benefited greatly from such linear transforms. Guillaumin
et al. [6], for example, formulate the metric learning problem for
face verification as a logistic regression problem.

Generic image classification methods have equally benefited
from supervised, low-rank linear transforms. The work of Wein-
berger et al. [8], for example, uses K-nearest neighbor classifiers
based on a Mahalanobis metric learned using a training set of
triplets consisting each of a reference image, a matching image, and
a non-matching image. Mensink et al. [9] extended this approach to
derive nearest class mean classifiers that had very low complexity
when adding new classes relative to approaches employing one-
versus-rest linear classifier that ideally need to be retrained with the
addition of every new class.

One exception to the use of supervised measures is image re-
trieval, where the query is an image and the expected response con-
sists of those images containing the same scene (or object), albeit un-
der perspective, lighting or colorimetric transformations. Indeed, the
more recent successful approaches for image retrieval employ unsu-
pervised methods to build low-rank linear transforms consisting of
subsets of the PCA basis [10, 11, 12] or random projections [2, 13].
One of the main reasons for the lack of supervised linear transforms
in image retrieval is the lack of adequate training datasets, as the ex-
isting datasets [14, 2, 15] are meant to be used only as evaluation
benchmarks and are hence too small and further biased towards spe-
cific content. Hence in the present work we introduce and exploit
the CNN News Footage dataset that makes it possible to learn linear
transforms for the image retrieval task.

In this paper we propose a new metric/similarity learning formu-
lation that uses soft-thresholding as the mechanism to learn the rank
of M. Our algorithm uses Stochastic Gradient Descent (SGD), as
SGD solvers have established themselves as the workhorse of large
scale learning [16, 17, 18]. It has further been established theoret-
ically and empirically that, for a fixed number of iterations, SGD
solvers achieve lower generalization cost than batch-based gradient
descent methods [18, 19, 20]. It is important to note that exist-
ing, SGD-compatible, rank-penalization methods derived from the
£1 norm require complexity-increasing tricks such as decomposing
the penalized variables into differences of non-negative variables
[20], and that these tricks often result in unstable sparse supports.
Our approach does not increase the learning complexity relative to
fixed-rank learning (wherein M is set to be rectangular), yet learns



the rank automatically, similarly to rank-penalized methods. It fur-
ther benefits from the stability and straight-forwardness of support
selection that characterizes soft thresholding-based approximators.

We test our proposed algorithm using existing datasets as well as
the new CNN News Footage dataset, comparing it against existing
algorithms for retrieval that employ more complex mechanisms to
achieve good retrieval performance. Our algorithm is shown to result
in very good performance despite the simplicity of the approach and
the low-complexity of the learning process.

The rest of this paper is organized as follows: In Section 2, we
provide an overview of image descriptors and some methods for
distance and correlation learning. We then formally introduce the
problem we address in Section 3 and present our proposed rank-
learning method in Section 4. In Section 5, we then present the
CNN News Footage dataset and evaluate our method experimen-
tally on this dataset and others. Finally, conclusions are discussed
in Section 6.

2. BACKGROUND

Many supervised learning methods exist that use different objectives
to define their linear transformation M [21]. We now present several
of these that are particularly suited to the image retrieval application
that we address in the experiments section.

Discriminative Component Analysis (DCA) [22] is a simple dis-
tance based metric learning algorithm that is based on maximizing
and minimizing the approximate total variances among the pairs of
dissimilar and similar items respectively. Chechik et al. [23] pro-
pose OASIS, a proximal stochastic algorithm for an objective based
on triplets (x,y,z) that enforces x' My > x' Mz — 1 + & using the
common approach wherein slack variables & are obtained from the
hinge loss. Neither DCA nor the OASIS approach can estimate a
low rank linear transformation unless the rank of their learned M is
set by hand which creates an important handicap during the training
phase.

Some more recent approaches have addressed this problem by
learning the linear transform, M, while enforcing terms that penal-
ize high rank matrices. The Metric Learning to Rank (MLR) ap-
proach of [24, 25] borrows the Structural Support Vector Machine
(SSVM) formulation of [26] by letting the ranking over the dataset
be the structure to infer and the learned M be the learned SSVM
classifier. The authors constrain M to be positive definite and further
substitute the margin-enhancing ¢, penalty term Tr(M ' M) with the
rank-constraining trace norm Tr(M), thus learning the rank of their
metric as part of the optimization. Semi-supervised Metric Learn-
ing Paradigm with Hyper Sparsity (SERAPH) [27] is a probabilistic
approach which is based on maximizing the entropy of the probabil-
ity distribution of the projected data while also enforcing sparsity in
the distribution. Similar to MLR, SERAPH also estimates a positive
semi-definite linear transform while penalizing the trace to estimate
a low rank transformation. Hence both these methods suffer from
having to perform singular value decomposition (SVD) with com-
putational complexity of O(n?)! at every iteration which results in
poor scalability for the data dimension.

3. PROBLEM DEFINITION

We consider the problem of efficiently comparing and ranking items
taken from a large set with a certain distribution. An example of such
a setup can be the comparison of images or a set of image features.

! indicates the larger dimension of the matrix M.

Let I represent one of many items that we would like to compare.
Let it also be given that every data item / is associated with a data
vector y € RN, For the example of comparing images, the items
represent the images to be compared whereas the data vectors are
features extracted from each image for easier processing. We assume
that there exists an unknown scalar similarity function S*(Il,lz) for
every item pair (1,1, ). Even though the function S*() is not known,
a set of constraints over S*() and a training set {I;,i = 1,..., T} (with
corresponding data vectors y; € 7) are assumed to be known. In this
paper we consider pairwise constraints, each of which is defined by
a pair of data points and an indicator variable as

Lif S*(I;,,1;,) > se

r?"Jp

{Cpair‘,p}g:l = {(iP>jP7YP) |Y[7 = { -1 lfS*(I, 71j ) <S¢ } (])

for an unknown constant s¢ so that the variable v, is 1 if two data
points are sufficiently similar (or in the same cluster) and —1 if not.
Such pairwise constraints are relevant to a task such as matching.
Without loss of generality, we define the task of matching as finding
afunction, S(v1,v2), given the constraints { Cpairp },_ » such that for
any given pair of query items and their corresponding data vectors,
(Yg1:¥q» ) the function S() satisfies S(ygq,,¥q,) > 0if S* (I, . Ig,) > sc
and S(yq,,¥g4,) < O otherwise.

The task of matching can be described as determining whether
a given query data belongs to a cluster in a dataset. For example,
in face recognition systems, the given facial picture of a person is
compared to other facial data of the same person within the database
to perform verification. It is also possible to perform matching be-
tween two given data points even though these points belong to a
cluster different from the observed clusters in the database.

4. PROPOSED METHOD

In this paper, we propose a new approach for learning Mahalanobis
metric transformations for the purpose of matching or ranking im-
ages. The proposed approach, which is called DAta SHrinking for
metric learning (DASH in short), can automatically learn a low-rank
Mahalanobis metric transformation with low computational com-
plexity and can be easily used for large scale datasets. The proposed
approach can be utilized both for Mahalanobis metric learning with
distance among the pairs computed as

Du(y1,¥2) = (y1 —y2) ' M'M(y; —y2) @)
or with correlation among the pairs computed as >
Sm(y1.¥2) =y M My,. §)

4.1. Data Shrinking for Distance Metric Learning (DASH-
Distance)

Let us assume a set of pairs of data points (each pair known to be
similar or dissimilar) is given as described in (1). In order to learn
a Mahalanobis metric transformation matrix M that can be used to
estimate the distances between any given two data descriptors as in
(2), we propose to minimize an objective function of the form:

M =argmin Y £(ll P +d0p-1)/2) @)
p=1

s.t.zp = Sy (M(yi, —¥,,))s

2Throughout this paper we assume the descriptors have an additional last
row of value 1 so that a translation vector is also learned within M, which is
essential for the correlation formulation.



where d is the desired separation among the distances of similar pairs
and dissimilar pairs. The function ¢() can be set as the hinge loss de-
fined as £(x) = max(—(x —a),0) or the logistic loss that is equal to
£(x) = log(exp(—owx) + 1) /a, in both of which the parameter o > 0
controls the value of penalty at x = 0 that is needed to avoid an all-
zero solution for M. Note that when the function S; () is the identity
operator, the optimization problem defined in (4) can be solved to
learn a Mahalanobis metric operator M from the given set of pairs.
The large distances between the pairs of similar items as well as the
small distances between the pairs of dissimilar items are penalized
during the optimization, where the parameter d controls the sepa-
ration between the distances among the similar pairs and the dis-
tances among the dissimilar pairs. In this case, a low rank M can be
learned either by specifying the dimensions of the matrix manually,
or including penalization terms that are known to enforce low rank
transformations as described in Section 2.

As an alternative, we propose to use a sparsifying function as
Sy, such that S (x) ~ x and S (x) is sparse. An example of such
a function is the element-wise soft thresholding function defined
component-wise as Sy (x) = max(]x| — A,0)sign(x) with a sparsify-
ing parameter A, which is in fact the solution to the optimization
problem argmin, 1||x —z|3 +A|/z||;. The motivations of using such
an approach is discussed in more detail in Section 4.3.

4.2. Data Shrinking for Correlation Metric Learning (DASH-
Correlation)

Similar to learning linear projection for distances, it is also possible
to apply the proposed approach for learning linear projection for cor-
relations. For this purpose, similar to (4), we propose to minimize
an objective function of the form:

m
Mcorr = argmin Z E(sz;-rpzip) st.z, =S, My;),t=1,....,T (5)
M p=1

4.3. Motivation for using a Sparsifying Function and Other ad-
vantages

The proposed algorithms rely on the fact that, when the projected
descriptors (in DASH-Correlation) or the difference of projected de-
scriptors (in DASH-Distance) are constrained to be sparse while
learning M, the energy of the projected coefficients are forced to
lie in a subset of the support. Therefore the rows of the projected
coefficients that are the least frequently utilized can inherently be
removed resulting in a low rank M. Some other advantages of the
proposed approaches are as follows:

e Even though the objective functions are non-convex, both of
the optimizations in (4) and (5) can be easily performed with
stochastic gradient descent (SGD) [20] since the required sub-
gradient is easy to compute for any given pair of data points.
Therefore the optimizations can be carried out even when the
projections are learned over very large datasets.’

o The linear transformation, M, is not constrained for scale.
Hence no matter the value of sparsifying parameter A, the
sparsity of the result depends only on the best possible perfor-
mance reached by the optimization. Therefore the proposed

3Thanks to the use of SGD, the computational complexity and memory
requirements of the algorithm per iteration is significantly low, however this
does not mean that the overall speed of the algorithm is higher than other
approaches, since the number of iterations required for convergence can be
much higher. However SGD results in a more flexible algorithm that can be
used with large databases where other algorithms may not be feasible.

Fig. 1: Example images from CNN News Footage dataset, the im-
ages labeled to be in the same group are shown with the same color
of background.

algorithms are not sensitive to the selection of A. If so desired,
a constraint on the norm of M can be added to better control
the resulting sparsity of the resulting coefficients.

e A low rank projection can easily be obtained without specify-
ing the rank manually prior to the optimization or without any
constraints on the singular values of the projection matrix dur-
ing learning stage. Furthermore, the rows of the learned pro-
jection matrix inherently contribute in varying degrees to the
distance (or correlation) estimation, and this degree of contri-
bution can be determined after the learning stage. This prop-
erty not only helps to determine the optimum dimensionality
reduction best suited for the dataset, but also makes it possi-
ble to change the desired rank after the optimization without
the need to learn M from scratch.

5. CNN DATASET AND THE EXPERIMENT RESULTS

CNN News Footage dataset. In order to test the performance of the
metric learning algorithms, we introduce a new dataset called CNN
News Footage dataset. The CNN News Footage dataset is a pub-
lic dataset composed of images extracted from videos of CNN news
broadcasts over the years. The images extracted from a footage of
the same scene in a news report are grouped together under a single
label and marked as similar. The dataset is composed of 17000 im-
ages in 5500 groups with various images being related to each other
by camera actions such as panning and zooming, as well as objects
being shot from multiple angles and occluded at times. Some ex-
ample images from the CNN News Footage dataset can be seen in
Figure 1. As a comparison, the Holidays dataset [2] which is com-
posed of images of similar properties contains around 1500 images
and 500 groups which is too small for supervised learning. 4

CNN News Footage splits. For testing the algorithms, 200
groups are randomly selected as test groups while the rest of the
groups are used to generate 55000 training pairs. VLAD feature
vectors [10] with PCA dimension of 512 are used as image descrip-
tors. The pairs of similar items for training are taken to be pairs of
images from the same group, while pairs of dissimilar items for train-
ing are chosen among the image pairs from different groups with the
most similar descriptors. Two separate test sets of pairs are used
for evaluation of algorithm performance. The pairs of similar items
for both test sets are generated only from the 200 test groups. The
pairs of dissimilar items of the first test set are selected among the
image pairs with most similar descriptors within the 200 test groups

4The CNN News Footage dataset can be obtained by contacting the au-
thors of this paper.
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Fig. 2: Comparison of proposed methods (DASH) against other metric learning algorithms with respect to False Positive Rate (FPR) (measured

at True Positive Rate of 0.95) and Area Under Curve (AUC).

whereas the pairs of dissimilar items of the second test set are se-
lected among the image pairs with most similar descriptors within
the entire 5500 groups.

Other datasets. We have also compared the performance of best
performing algorithms in CNN News Footage dataset on Yosemite,
Notredame and Liberty datasets given in [28]. Dense SIFT descrip-
tors of length 1152 (composed of 9 blocks for each SIFT descrip-
tor) are used as image descriptors. The algorithms are trained us-
ing 500000 training pairs from Yosemite dataset and then tested by
100000 test pairs from all three datasets.

Baseline algorithms. The performance of the proposed al-
gorithms, DASH-Distance and DASH-Correlation, are compared
against the methods discussed in Section 2 (OASIS [23], DCA, [22],
MLR [24] and SERAPH [27]). These methods are chosen because
they carry out supervised learning of linear transforms for general
ranking applications, and hence they are immediately adapted to the
supervised image retrieval task we address. Note that, in all cases,
we use the code made available by the authors. For the fixed rank
algorithms (DCA and OASIS), the rank of the linear transform is
manually selected whereas for the rank learning algorithms (MLR
and SERAPH) the parameters are adjusted so that the learned linear
transform is at the desired rank. For the proposed approaches the
rank of the linear projection is adjusted after the learning stage. The
target rank for CNN News Footage dataset is selected as 330 while
the target rank for the other datasets are selected as 400.

For the DASH algorithm, the parameters o for the log-loss and
the separation distance d are set empirically through a number of
Monte-Carlo simulations. The soft thresholding parameter, A is also
selected empirically, however the algorithm is noted to be not sensi-
tive to the selection of this parameter as described in Section 4.3.

Comparison of the performances of all the methods on the CNN
database can be seen in the left column of Figure 2. The perfor-
mance of using raw descriptors are also provided for comparison.
The performance is measured in the criterion of false positive rate
(corresponding to a true positive rate of 0.95) on top and in the cri-
terion of area under curve (AUC) on the bottom. It can be seen in
the results that the performance of SERAPH and DASH (both cor-
relation and distance) are better than the other methods in general
and very close to each other. The performance of DCA is also close,
however this algorithm requires specifying manually the dimension-

ality reduction of the projection matrix. The comparison of SERAPH
and DASH for the Yosemite, Notredame and Liberty datasets is also
shown in the right column of Figure 2.

It is observed that the low rank projections learned on the CNN
News Footage dataset do not necessarily perform well on other
benchmark datasets such as the ones introduced in [2, 14, 15],
which due to the different overall characteristics of the images in the
datasets. The performance results within the CNN News Footage
dataset also suggest that the retrieval task is not very challenging
for the tested algorithms. In order to overcome this limitation, we
consider extending the CNN News Footage dataset with more im-
ages having higher diversity and greater retrieval difficulty as future
work.

All the presented results show that the proposed approach can
match the best performance among the other methods in the litera-
ture with the added benefit of simple and low complexity optimiza-
tion as well as automatic learning of the dimensionality reduction
best suited for the data at hand. Even though the proposed opti-
mization problems are non-convex, the minimization is observed to
be stable. Furthermore, the proposed optimization approach is ro-
bust to the selection of some of the parameters such as the sparsi-
fying threshold, A, since the scale of the learned projection is not
constrained and the best compromise of the scale is automatically
learned to balance the resulting dimensionality reduction and spar-
sity vs. the matching performance for the training pairs.

6. CONCLUSIONS

In this paper we have presented a new approach to learn linear pro-
jections for image matching and ranking. The proposed approach
can learn the dimensionality reduction in the projection best suited
for the task without any computationally complex steps during learn-
ing such as singular or eigenvalue decomposition. It can also be eas-
ily applied for large datasets thanks to the use of stochastic gradient
descent with very computationally cheap updates.

A new dataset for image ranking called CNN News Footage
dataset is also introduced, which has a much larger size than any
other comparable dataset that currently exists. Extending this dataset
to have greater diversity in order to provide more challenge is con-
sidered as future work.
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