
The CNN News Footage Datasets: Enabling
Supervision in Image Retrieval
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Abstract—Image retrieval in large image databases is an
important problem that drives a number of applications. Yet
the use of supervised approaches that address this problem has
been limited due to the lack of large labeled datasets for training.
Hence, in this paper we introduce two new datasets composed of
images extracted from publicly available videos from the Cable
News Network (CNN). The proposed datasets are particularly
suited to supervised learning for image retrieval and are larger
than any other existing dataset of a similar nature. The datasets
are further provided with a set of pre-computed, state-of-the-
art image feature vectors, as well as baseline results. In order
to facilitate research in this important topic, we also detail a
generic, supervised learning formulation for image retrieval and
a related stochastic solver.

I. INTRODUCTION

The dawn of the handheld device has brought along with
it an explosion of acquisition and storage of image and video
content, and accordingly a need to automatically search and
retrieve this content based solely on the available low-level
pixel information. Amongst the various existing image search
methods that address this need, one can distinguish roughly
between two main tasks: i) image classification, which consists
of determining the presence or absence of a visual class
(e.g., cat) in a new and never-seen image given a set of
examples of that class, and ii) image retrieval, which consists
of retrieving images of a specific scene (or object) given an
example image, despite possibly large photometric, perspective
or background differences.

Particularly over the last two decades, learning algorithms
have became crucial enablers of the image search tasks de-
scribed above. A paramount example of this is the method
of Sivic and Zisserman [1], which used a K-means-learned
codebook to derive the Bag-of-Words (BoW) image feature.
BoW soon became a crucial component of various image
retrieval and classification systems, and to this day, the related
K-means-derived inverted file index is an integral part of high-
speed image retrieval systems [2]. The VLAD feature vector
[3], an extension of BoW likewise based on K-means code-
books, further leveraged spatially-dependent rotations learned
via PCA. VLAD and the related Fisher feature vector [4]
achieve state-of-the-art performance in image retrieval, with
the latter substituting the codebook with a learned Gaussian
Mixture Model (GMM). Note that all of these methods (K-
means, PCA, and GMM) estimate models of the distribution
of the training images (or rather, of low-level feature vectors

extracted from these), and hence do not require any sort
of human annotation of the training images. Such learning
methods are termed unsupervised.

In supervised learning, on the other hand, the training set is
embedded with some notion of human understanding that the
system being trained needs to reflect. A paramount example
of this is image classification, where each training example is
an (x, y) pair, with x ∈ Rd a low-level feature (e.g., a color-
histogram) extracted automatically from the image, and y ∈
{−1, 1} a human-generated annotation indicating the presence
or absence of a class. An impressive recent example of the
merits of supervised learning in classification is the resurgence,
starting in 2012 [5], of deeply stacked neural networks.

Yet the image retrieval task continues to be an exception
to the exploitation of supervised learning. One of the main
reasons for this is the lack of adequate training datasets: While
very large datasets consisting of up to millions of images and
thousands of classes indeed exist for face verification [6], [7]
and image classification [8], the existing datasets for image
retrieval are small and meant only to be used as a comparison
tool.

The Oxford buildings dataset [9], for example, contains only
5, 062 images of 11 different scenes. The INRIA Holidays
dataset [10] contains only 1, 092 images of about 500 scenes.
An earlier dataset, the UKBench dataset [11], is larger and
more diverse, but its images contain a single, well-centered
object and hence most recent methods already perform per-
fectly on this dataset.

The aim of the present work is thus to introduce two new
datasets that will enable the use of supervised learning for
image retrieval. The first of those, the CNN News Footage
Dataset, consists of keyframes derived from a large amount of
public access videos from the Cable News Network (CNN).
News footage was chosen due to its wide variety of content.
The second dataset, Extended CNN News Footage Dataset,
includes more images which are artificially generated from the
images of CNN News Footage Dataset by randomly rotating,
translating, cropping and scaling to make the task of ranking
more challenging. Our datasets further include a full set of
VLAD feature vectors of various dimensionalities.1

1Both the CNN News Footage and Extended CNN News Footage databases
can be obtained from the website: http://www.technicolor.com/en/patrick-
perez



Besides the main contribution discussed above, we make
two supplementary contributions. First, we discuss a generic
framework to carry out learning for image retrieval using
Stochastic Gradient Descent (SGD) that can be exploited
by specific research endeavours relying on our dataset. And
secondly, we provide baseline results on our dataset with an
unsupervised and supervised metric learning algorithm from
the literature.

II. LEARNING FOR IMAGE RETRIEVAL

In this section we present a generic learning framework that
can be used to carry out supervised learning for image retrieval
using the introduced CNN News Footage dataset. We first
present a learning problem that is well suited for the image
retrieval task and subsequently discuss a generic Stochastic
Gradient Descent (SGD) algorithm to solve this problem.

A. Learning objectives
Similarly to other image retrieval datasets, the CNN News

Footage datasets we introduce are organized into groups of
matching images. From these groups, we derive pairs of
matching or non-matching images. Such pairs can be repre-
sented using P = (i, j, y) tuples, where i and j are image
indices, and the annotation y ∈ {1,−1} denotes whether the
indicated pair of images Ii and Ij match (y = 1) or do not
match (y = −1). We refer to pairs having y = 1 as positive
pairs, and those having y = −1 as negative pairs.

Using this organization of the training set, one is interested
in learning methods that enforce that distances between images
of matching pairs are lower than distances between images
of non-matching pairs. We let dΘ(Ii, Ij) denote a distance
function used to compare images and which depends on a
set of parametres Θ. This representation can correpond to
a wide range of situations. For example, Θ can represent a
positive semi-definite (p.s.d.) Mahalanobis matrix, in which
case, letting f(I) ∈ Rd denote a vector representation of an
image I, the distance function dΘ takes the following form:

dΘ(Ii, Ij) = (f(Ii)− f(Ij))
>

Θ (f(Ii)− f(Ij)) ,

for p.s.d. Θ. (1)

Alternatively, the image representation function f can itself
depend on a set of parameters Θ, and the metric computation
can take a simpler form, e.g.,

dΘ(Ii, Ij) = ‖f(Ii; Θ)− f(Ij ; Θ)‖2. (2)

Possible formulations for the representation function f include
the GMM or VLAD representations, where Θ would corre-
spond to the codebook or GMM parameters, or deep convolu-
tional architectures where Θ would represent the convolutional
filters.

a) Representation and metric decomposition: More gen-
erally, it is possible to have approaches that combine metric
models such as (1) and feature representation models such as
(2). It is convenient in such cases to express dΘ in terms of
i) an image representation function

f : I × T1 → Rd (3)

that maps the images I ∈ I and model parameters Θ1 ∈ T1

to a d-dimensional vector representation of the image, and ii)
a metric

g : Rd × Rd × T2 → R+ (4)

that assigns a positive scalar to two input image feature vectors
given the model parameters Θ2 ∈ T2. Accordingly, dΘ can be
written as follows, where Θ = (Θ1,Θ2):

dΘ(Ii, Ij) = g (f(Ii; Θ1), f(Ij ; Θ1); Θ2) . (5)

This formulation is compatible with a wide range of existing
metric learning methods and image feature extraction methods,
whether supervised or unsupervised.

b) Learning Θ: In order to favor the generalization
power of learned models, it is desirable that distances for
matching pairs are lower than those for non-matching pairs
by some non-negligible margin b > 0. Using the overloaded
notation

dΘ(P) , dΘ(Ii, Ij) (6)

for convenience, this margin-compliant distance constraint can
be represented as follows, where Pm = (im, jm, ym = 1)
contains a positive pair and Pn = (in, jn, yn = −1) a negative
pair:

dΘ(Pn)− dΘ(Pm)− b ≥ 0. (7)

In practice, it might not be possible to enforce the above
constraints for all possible Pm and Pn. Similarly to the
approach used to train Support Vector Machines (SVMs) over
non-linearly-separable training sets [12], one can relax some
of the constraints by means of learned, non-negative slack
variables ξmn ≥ 0 using

dΘ(Pn)− dΘ(Pm)− b+ ξmn ≥ 0. (8)

A sensible optimization strategy hence amounts to reducing
the number of active slack variables (i.e., making the variables
{ξmn}m,n sparse), as well as minimizing the magnitude of
those that are active. Letting

M , {Pk s.t. yk = 1} and N , {Pk s.t. yk = −1}, (9)

denote, respectively, the set of all positive pairs and all
negative pairs, a relaxed formulation of this strategy relying
on the `1 norm of {ξmn}m,n and enjoying convexity in the
ξmn is

min
Θ,{ξmn}

λΩ (Θ) +
1

N

∑
m∈M
n∈N

ξmn (10)

dΘ(Pn)− dΘ(Pm)− b+ ξmn ≥ 0, ξmn ≥ 0

where N is the total number of terms in the summation and
Ω is a regularization function with scalar penalty weight λ ≥
0. The two constraints on the variables ξmn can be used to
express ξmn in closed form by means of the hinge loss

`b(x) , max(0, b− x) (11)

as follows:

ξmn = `b(dΘ(Pn)− dΘ(Pm)). (12)



Accordingly, the resulting form of (10) is

min
Θ

λΩ (Θ) +
1

N

∑
m∈M
n∈N

`b (dΘ(Pn)− dΘ(Pm)) . (13)

For completeness we note that one could restrict the summa-
tion over n to the subset

Nm = {Pk s.t. ik = im, yk = −1} (14)

derived from image index im in Pm = (im, jm, 1) or,
alternatively, restrict the summation over m to the analogous
set

Mn = {Pk s.t. ik = in, yk = 1} (15)

derived from Pn = (in, jn,−1). Using either of the above
restrictions covers the case where the groups are organized
into triplets of the form (i, i+, i−), with i being the index of
an arbitrary image, and i+ (respectively, i−) the index of a
matching (non-matching) image [13].

B. Related methods

The formulation in (13) is a generic formulation that covers
various existing metric and representation learning methods,
possibly with minor variations.

One potential problem with (13) is that, particularly for
feature spaces Rd of high dimension d, the values of distances
dΘ(P) will vary greatly in magnitude across space, and this
will artificially enhance the contribution of certain pairs to the
objective function. This problem can be addressed by means of
spatially-dependent normalization multipliers w(Pm,Pn) that
weigh the `b term inside (13) and that can be subsumed within
g in our formulation.

The approach of [14] considers instead weights w(Pm,Nm)
that depend on all possible negative pairs Nm derived from
image index im in Pm = (im, jm, ym):

w(Pm,Nm) =

∑rm
k=1

1
k

rm
, (16)

where rm = |{Pn ∈ Nm s.t. dΘ(Pn) < dΘ(Pm)}| is the
number of pairs from Nm with distance lower than that for
Pm.

The method of [15] uses a small variation of (13) to learn
a codebook for the VLAD image representation. The main
difference in their objective function is that the summation
over m ∈M in (13) is substituted by a minimization over m ∈
Mn. This adaptation is intented to mitigate the noisiness of the
annotations y that is a consequence of their automated training
set compilation strategy. The end result is that the objective in
(13) will depend only on those positive pairs Pm = (im, jm, 1)
such that the image (with index) jm is closest in feature space
to image im than all other images j, and hence most likely to
be a correct match.

C. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is an optimization
method that can be applied to empirical risks of the form

1

N

N∑
i=1

φ (Θ,Si) , (17)

where Si is a sample from the training set and Θ is set of
model parameters being learned. At iteration t, SGD proceeds
by drawing a random example Sit from the training set and
updating the current estimate Θt of the parameters using 2

Θt+1 = Θt − γt∇Θφ (Θ,Sit) , (18)

where γt = γ/(t + t0) is the learning rate [16], with
coefficients γ and t0 set by means of cross-validation.

For completeness, we give generic gradient expressions
enabling the application of (18) to the problem in (13) for
distances of the form (5), where the training examples Si can
be taken to be (Pm,Pn)-pairs and

φ (Θ, (Pm,Pn)) = λΩ (Θ)+ `b (dΘ(Pn)− dΘ(Pm)) . (19)

Accordingly, letting J·K evaluate to 1 if the condition is true
and 0 otherwise, the (sub-)gradient required in (18) is

∇Θφ = λ∇ΘΩ− Jb− z ≥ 0K
(
∇ΘdΘ(Pn)−∇ΘdΘ(Pm)

)
,

(20)
where z = dΘ(Pn) − dΘ(Pm) and the gradients of dΘ can
be assembled from the partial gradients ∇Θ1

dΘ(P) = ∇Θ1
g

and, letting fk , f(Ik; Θ2) and P = (i, j, y),

∇Θ2
dΘ(P) =

∂g(x, fj ; Θ2)

∂x

∣∣∣∣
fi

· ∂fi
∂Θ2

+
∂g(fi, x; Θ2)

∂x

∣∣∣∣
fj

· ∂fj
∂Θ2

. (21)

III. THE CNN NEWS FOOTAGE DATASETS

In this section, we provide the details on how the images of
the CNN News Footage Dataset are selected and processed and
how the Extended CNN News Footage Dataset is generated.

A. Image Source and Characteristics

The images in the database are taken from the videos of
Cable News Network (CNN) news reports that are publicly
available from Internet Archive3 and are used in online demo
of EU Project AXES.4 These videos are chosen particularly
because of their variety in content in addition to being publicly
available for use. The keyframes from the videos of CNN news
reports of a total of 522 days from the year 2007 to 2011 are
extracted and processed as described in Section III-B. The
original keyframes have the resolution of 320 × 240 in the
videos from earlier years with analog broadcast and 400×224
in the videos from later years with digital broadcast. The video

2We use the convention that gradients are row vectors and, for f : Ra →
Rb,x 7→ f(x), ∂f

∂x
∈ Rb×a is the Jacobian matrix. For consistency, Θ can

be thought of as a row vector.
3https://archive.org/details/TV-CNN
4http://www.axes-project.eu/?page_id=2310



Fig. 1. Positive pairs. Some examples of matching pairs formed by images from the groups of CNN News Footage dataset. They span a variety of scenes,
from close-ups to full shots, from empty to cluttered background, and of intra-pair variations, from small camera/object movements to large scene changes
due to pose variations or object movements.

Fig. 2. Geometric processing of images. Examples of how the images are
processed in the dataset preparation: The images are cropped (as indicated
with blue box) to exclude text overlays; For temporally close images, the
common field of view (indicated with red boxes) is tentatively obtained
through homographic matching and similarity is decided for this pair based on
the confidence of the homography and the relative size of the shared region.

2 3 4 5 6 7 8 9 10 11-14 15+

2992

1102
513 594

176 102 77 43 44 54 19

Fig. 3. Image groups statistics. Size histogram for the 5,417 image groups
that form the CNN News Footage dataset.

content include studio discussions, street interviews, and the
large variety of footage that support news reports.

B. Annotation Methodology

The extracted keyframes of the news footage are processed
and annotated by following the steps:

1) The images are sorted chronologically and local features
are extracted from each image (excluding the ones in
bottom regions where text overlays appear). The features
of each image are matched to the features of other
images that are chronologically close, in order to find
the homography and the common areas between the
image pairs as shown in Figure 2. The pairs that have
a valid transformation and large enough common area
are selected to be in the same similarity group. Identical
images are also removed.

2) All the images are cropped to a size of 320 × 180 as
shown in Figure 2 so as to remove the text overlays that
appear in the bottom of the picture in the news reports.

3) All the images are manually filtered to exclude the
images with:
• Synthetic imagery (such as weather reports or split

screen interviews);
• Blurry or low quality images;
• Images that appear too frequently (such as the news

anchors recorded in the studio).
4) The image groups are manually checked to join the

groups with very similar images and remove irrelevant
images from the groups. Finally the groups with a single
image are also removed.

The finalized database is composed of 17038 images or-
ganized within 5417 groups. The histogram of the number of
images in these groups is shown in Figure 3. All images within
a group are considered to be mutually similar (or matching).
A set of positive (and negative) image pairs (or a set of image
triplets) can be generated from these groups for the purpose
of training and testing supervised retrieval algorithms. Some
example pairs from a number of groups are shown in Figure 1.

C. The Extended Database

In order to increase the number of images and to make the
image retrieval task more challenging, we have also created
an extended version of the CNN News Footage Dataset. The
Extended CNN News Footage Dataset is created by generating
new images from the existing images in CNN News Footage so
as to have 10 or more images in each image group (including
the original images of CNN News Footage database). The
additional images are generated by randomly (i) rotating, (ii)
translating, (iii) cropping and (iv) scaling the original images.
The transformation effects are applied jointly so that the
image is randomly rotated, translated and cropped with the
constraint that the final image is always within the original
image (no black borders in the randomly generated images).
Finally it is scaled up to so that larger side is 320 pixels. The
Extended CNN News Footage database is composed of 66728
images organized within 5417 groups and it is significantly



CNN Extended CNN
d 16 32 64 128 16 32 64 128

PCA 0.80 0.89 0.94 0.97 0.04 0.04 0.06 0.06
ML 0.84 0.93 0.95 0.98 0.10 0.13 0.15 0.17

TABLE I
BASELINE MAP RESULTS FOR THE CNN NEWS FOOTAGE AND EXTENDED

CNN NEWS FOOTAGE DATASETS USING VARIOUS DIMENSIONS d OF
PROJECTION MATRICES.

more challenging than CNN News Footage database for image
retrieval task.

IV. BASELINE RESULTS

In this section we present baseline results for our pro-
posed CNN News Footage and Extended CNN News Footage
datasets. These results are meant as a comparison basis for
future image retrieval methods relying on supervised learning
that exploit our dataset. For this purpose 500 randomly se-
lected groups with a total of 1635 images are separated as a
test set, and the images in the remaining groups are used to
randomly generate positive and negative pairs for training.

We compute results using the Mahalanobis metric learning
(ML) in (1) under the learning objective in (13) but with
weights as specified in (16) [14]. For the image representation
function f , we use the VLAD representation [3] based on
local SIFT descriptors extracted densely over a regular grid
at three different scales. We restrict the rank of p.s.d. matrix
Θ to a fixed value d. This amounts to computing a d-
dimensional projection of the VLAD representation, and we
provide baseline results for various d.

As a performance measure, we use mean Average Precision
(mAP), which we now describe: For a given test query image
I, the other test images are ranked according to learned
distance dΘ(I, ·). We let Tk ≤ k denote the number of true
matching images within the k top-ranked images. We also
let Q denote the total number of true matches for that query
image. Accordingly, precision Pk and recall Rk at rank k are
given by

Pk =
Tk
k
, Rk =

Tk
Q
. (22)

The Average Precision (AP) for that query image is then the
area under the curve plotting Rk vs. Pk for k = 1, . . . ,K,
where K is the total number of images in the database.
Accordingly, mAP is obtained by averaging the AP of all the
query images in the test set.

In Table I and Table II, we present baseline results for
various dimensions d using mAP and P1 as performance
measures. The mAP and P1 are computed for retrieval from
the entire database with query images from the test set (one
query image per each group in test set). To illustrate the
merits of supervised learning over unsupervised learning, we
likewise present results using PCA-based projections for the
same dimensions.

CNN Extended CNN
d 16 32 64 128 16 32 64 128

PCA 0.83 0.92 0.95 0.97 0.10 0.13 0.21 0.25
ML 0.87 0.94 0.96 0.98 0.33 0.42 0.49 0.53

TABLE II
BASELINE P1 RESULTS FOR THE CNN NEWS FOOTAGE AND EXTENDED

CNN NEWS FOOTAGE DATASETS USING VARIOUS DIMENSIONS d OF
PROJECTION MATRICES.

V. CONCLUSION

In this work, we introduce two new datasets tailored for the
image retrieval task wherein images match if they contain the
same scene or object, albeit under potentially wide variations
in pose. Up to now, datasets for image retrieval have been
too small and used only as a comparison tool. The datasets
we present, on the other hand, is large enough to enable
supervised learning, a rich vein until now untapped by methods
addressing the image retrieval task. Along with our datasets,
we provide a set of image feature vectors to enable quick
prototyping by future research efforts, as well as baseline
results for comparison purposes. We further present a generic
supervised learning method for the retrieval task including the
generic problem formulation and related stochastic solver.
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